为什么偶合现实主义者应该支持巴肯公式

IF 0.3 3区 文学 0 PHILOSOPHY
Nicholas Rimell
{"title":"为什么偶合现实主义者应该支持巴肯公式","authors":"Nicholas Rimell","doi":"10.1007/s12136-022-00508-1","DOIUrl":null,"url":null,"abstract":"<div><p>On its usual interpretation, the Barcan Formula—◊∃<b>xB</b> → ∃<b>x</b>◊<b>B</b>—says that, if there could have been something that is such and such a way, then there is something that could have been that way. It is traditionally held that contingentist actualists should—indeed, must—reject the Barcan Formula. I argue that contingentist actualists should—indeed, must—endorse the Barcan Formula, at least assuming a standard, Tarskian conception of truth and truth preservation. I end by proposing a logic for contingentist actualists that validates the Barcan Formula. This logic has the surprising feature of also validating the Converse Barcan Formula, □∀<b>xB</b> → ∀<b>x</b>□<b>B</b>, while still invalidating related formulas—such as □∀<b>x</b>□∃<b>y x</b> = <b>y</b> (NNE)—that contingentist actualists should reject. It does this by employing models with fixed domains but assignments to the identity predicate that vary across worlds.</p></div>","PeriodicalId":44390,"journal":{"name":"Acta Analytica-International Periodical for Philosophy in the Analytical Tradition","volume":"38 1","pages":"133 - 159"},"PeriodicalIF":0.3000,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Why Contingentist Actualists Should Endorse the Barcan Formula\",\"authors\":\"Nicholas Rimell\",\"doi\":\"10.1007/s12136-022-00508-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>On its usual interpretation, the Barcan Formula—◊∃<b>xB</b> → ∃<b>x</b>◊<b>B</b>—says that, if there could have been something that is such and such a way, then there is something that could have been that way. It is traditionally held that contingentist actualists should—indeed, must—reject the Barcan Formula. I argue that contingentist actualists should—indeed, must—endorse the Barcan Formula, at least assuming a standard, Tarskian conception of truth and truth preservation. I end by proposing a logic for contingentist actualists that validates the Barcan Formula. This logic has the surprising feature of also validating the Converse Barcan Formula, □∀<b>xB</b> → ∀<b>x</b>□<b>B</b>, while still invalidating related formulas—such as □∀<b>x</b>□∃<b>y x</b> = <b>y</b> (NNE)—that contingentist actualists should reject. It does this by employing models with fixed domains but assignments to the identity predicate that vary across worlds.</p></div>\",\"PeriodicalId\":44390,\"journal\":{\"name\":\"Acta Analytica-International Periodical for Philosophy in the Analytical Tradition\",\"volume\":\"38 1\",\"pages\":\"133 - 159\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Analytica-International Periodical for Philosophy in the Analytical Tradition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12136-022-00508-1\",\"RegionNum\":3,\"RegionCategory\":\"文学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"PHILOSOPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Analytica-International Periodical for Philosophy in the Analytical Tradition","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s12136-022-00508-1","RegionNum":3,"RegionCategory":"文学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"PHILOSOPHY","Score":null,"Total":0}
引用次数: 1

摘要

根据其通常的解释,巴肯公式-∃xB→∃x - b表明,如果有某种东西是这样那样的,那么就有某种东西是那样的。传统上认为,偶然现实主义者应该——事实上,必须——拒绝巴肯公式。我认为,偶然现实主义者应该——事实上,必须——认可巴肯公式,至少假设一个标准的、塔斯基式的真理和真理保存概念。最后,我为偶合主义实现者提出了一个验证巴肯公式的逻辑。这个逻辑有一个令人惊讶的特点,它可以验证反向巴肯公式,■∀xB→∀x□B,同时仍然可以验证相关的公式,例如∀x□∃y x = y (NNE),而这些公式是偶然现实主义者应该拒绝的。它通过使用具有固定域的模型来实现这一点,但对不同世界的标识谓词的分配是不同的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Why Contingentist Actualists Should Endorse the Barcan Formula

On its usual interpretation, the Barcan Formula—◊∃xB → ∃xB—says that, if there could have been something that is such and such a way, then there is something that could have been that way. It is traditionally held that contingentist actualists should—indeed, must—reject the Barcan Formula. I argue that contingentist actualists should—indeed, must—endorse the Barcan Formula, at least assuming a standard, Tarskian conception of truth and truth preservation. I end by proposing a logic for contingentist actualists that validates the Barcan Formula. This logic has the surprising feature of also validating the Converse Barcan Formula, □∀xB → ∀xB, while still invalidating related formulas—such as □∀x□∃y x = y (NNE)—that contingentist actualists should reject. It does this by employing models with fixed domains but assignments to the identity predicate that vary across worlds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
35
期刊介绍: Acta Analytica is an international journal for philosophy in the analytical tradition covering a variety of philosophical topics including philosophical logic, metaphysics, epistemology, philosophy of science and philosophy of mind. Special attention is devoted to cognitive science. The journal aims to promote a rigorous, argument-based approach in philosophy. Acta Analytica is a peer reviewed journal, published quarterly, with authors from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信