多孔介质非线性固结的数值模拟

Q3 Materials Science
S. Sheshenin, N. Artamonova
{"title":"多孔介质非线性固结的数值模拟","authors":"S. Sheshenin, N. Artamonova","doi":"10.15593/perm.mech/2022.1.13","DOIUrl":null,"url":null,"abstract":"In this paper, the general formulation of the problem of coupled deformation of a porous deformable medium with a fluid flowing through the pores is formulated, mathematically investigated and numerically implemented within the framework of physical and geometric nonlinearity. We present the formulation of the problem in velocities of solid phase displacements and the rate of pore pressure change in differential and variational forms. A phenomenological approach was used to formulate the mechanical model. The equations of the coupled consolidation model were derived from the general conservation laws of continuum mechanics using spatial averaging over a representative volume element. The consolidation model took into account the change in the porosity and permeability of the medium during deformation. The equations of filtration and porosity change, originally presented in Euler approach, were reformulated in Lagrangian coordinates of the solid phase using the relative fluid velocity according to ALE (Arbitrary Lagrangian - Eulerian) approach. The Gâteaux differentiation technique was used to linearize the variational equilibrium equations. For spatial discretization of the saddle system of equations, the finite element method (FEM) was used: quadratic serendipity elements for approximating the equilibrium equations and Brick type elements for approximating the filtration equation. To solve the system of equilibrium and filtration equations, a generalization of the implicit scheme with internal iterations at each time step by the Uzawa method was used. The results of numerical simulation of elastoplastic deformation of a water-saturated soil under load with fluid outflow are presented. To simulate the constitutive relations of elastoplastic deformation of soil under short-term loads, a generalization of S.S. Grigoryan's model to large deformations is proposed. The calculations were carried out in our own program code. The developed consolidation model can be used to simulate the formation of tracking ruts and unevenness of natural roads, as well as to calculate the uneven settlement of engineering structures.","PeriodicalId":38176,"journal":{"name":"PNRPU Mechanics Bulletin","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Simulation of the Nonlinear Consolidation of Porous Media\",\"authors\":\"S. Sheshenin, N. Artamonova\",\"doi\":\"10.15593/perm.mech/2022.1.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the general formulation of the problem of coupled deformation of a porous deformable medium with a fluid flowing through the pores is formulated, mathematically investigated and numerically implemented within the framework of physical and geometric nonlinearity. We present the formulation of the problem in velocities of solid phase displacements and the rate of pore pressure change in differential and variational forms. A phenomenological approach was used to formulate the mechanical model. The equations of the coupled consolidation model were derived from the general conservation laws of continuum mechanics using spatial averaging over a representative volume element. The consolidation model took into account the change in the porosity and permeability of the medium during deformation. The equations of filtration and porosity change, originally presented in Euler approach, were reformulated in Lagrangian coordinates of the solid phase using the relative fluid velocity according to ALE (Arbitrary Lagrangian - Eulerian) approach. The Gâteaux differentiation technique was used to linearize the variational equilibrium equations. For spatial discretization of the saddle system of equations, the finite element method (FEM) was used: quadratic serendipity elements for approximating the equilibrium equations and Brick type elements for approximating the filtration equation. To solve the system of equilibrium and filtration equations, a generalization of the implicit scheme with internal iterations at each time step by the Uzawa method was used. The results of numerical simulation of elastoplastic deformation of a water-saturated soil under load with fluid outflow are presented. To simulate the constitutive relations of elastoplastic deformation of soil under short-term loads, a generalization of S.S. Grigoryan's model to large deformations is proposed. The calculations were carried out in our own program code. The developed consolidation model can be used to simulate the formation of tracking ruts and unevenness of natural roads, as well as to calculate the uneven settlement of engineering structures.\",\"PeriodicalId\":38176,\"journal\":{\"name\":\"PNRPU Mechanics Bulletin\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PNRPU Mechanics Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15593/perm.mech/2022.1.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PNRPU Mechanics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15593/perm.mech/2022.1.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

本文在物理和几何非线性的框架下,给出了多孔可变形介质与流过孔隙的流体耦合变形问题的一般公式,并进行了数学研究和数值实现。我们以微分和变分形式提出了固相位移速度和孔隙压力变化率问题的公式。采用现象学方法来制定力学模型。根据连续介质力学的一般守恒定律,采用代表性体积元的空间平均法推导了耦合固结模型的方程。固结模型考虑了变形过程中介质孔隙度和渗透率的变化。采用任意拉格朗日-欧拉方法,利用相对流体速度在固相拉格朗日坐标系中重新表述了原先在欧拉方法中提出的过滤方程和孔隙率变化方程。采用gastteaux微分法对变分平衡方程进行线性化处理。对鞍型方程组进行空间离散化,采用二次元法逼近平衡方程,采用Brick型元逼近过滤方程。为了求解平衡和过滤方程组,采用了Uzawa方法对隐式格式进行推广,在每个时间步上进行内迭代。给出了具有流出流体的饱和水土在荷载作用下弹塑性变形的数值模拟结果。为了模拟短期荷载作用下土体弹塑性变形的本构关系,提出了将S.S. Grigoryan模型推广到大变形的方法。计算是在我们自己的程序代码中进行的。所建立的固结模型可用于模拟轨迹车辙的形成和天然路面的不均匀度,也可用于计算工程结构的不均匀沉降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Simulation of the Nonlinear Consolidation of Porous Media
In this paper, the general formulation of the problem of coupled deformation of a porous deformable medium with a fluid flowing through the pores is formulated, mathematically investigated and numerically implemented within the framework of physical and geometric nonlinearity. We present the formulation of the problem in velocities of solid phase displacements and the rate of pore pressure change in differential and variational forms. A phenomenological approach was used to formulate the mechanical model. The equations of the coupled consolidation model were derived from the general conservation laws of continuum mechanics using spatial averaging over a representative volume element. The consolidation model took into account the change in the porosity and permeability of the medium during deformation. The equations of filtration and porosity change, originally presented in Euler approach, were reformulated in Lagrangian coordinates of the solid phase using the relative fluid velocity according to ALE (Arbitrary Lagrangian - Eulerian) approach. The Gâteaux differentiation technique was used to linearize the variational equilibrium equations. For spatial discretization of the saddle system of equations, the finite element method (FEM) was used: quadratic serendipity elements for approximating the equilibrium equations and Brick type elements for approximating the filtration equation. To solve the system of equilibrium and filtration equations, a generalization of the implicit scheme with internal iterations at each time step by the Uzawa method was used. The results of numerical simulation of elastoplastic deformation of a water-saturated soil under load with fluid outflow are presented. To simulate the constitutive relations of elastoplastic deformation of soil under short-term loads, a generalization of S.S. Grigoryan's model to large deformations is proposed. The calculations were carried out in our own program code. The developed consolidation model can be used to simulate the formation of tracking ruts and unevenness of natural roads, as well as to calculate the uneven settlement of engineering structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PNRPU Mechanics Bulletin
PNRPU Mechanics Bulletin Materials Science-Materials Science (miscellaneous)
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信