基于RSM-ANN联合模式的电火花加工UNS N06690线刀具表面形貌及优化研究

IF 3.5 Q1 ENGINEERING, MULTIDISCIPLINARY
A. Raj, J. P. Misra, D. Khanduja, V. Upadhyay
{"title":"基于RSM-ANN联合模式的电火花加工UNS N06690线刀具表面形貌及优化研究","authors":"A. Raj, J. P. Misra, D. Khanduja, V. Upadhyay","doi":"10.1108/ijsi-09-2021-0101","DOIUrl":null,"url":null,"abstract":"PurposeThe purpose of this study is to examine the postprocessed wire tool surface using scanning electron microscopy and find out the streamlined conditions of input process variables using multi-objective optimization techniques to get minimum wire wear values.Design/methodology/approachA federated mode of response surface methodology (RSM) and artificial neural network (ANN) is used to optimize the process variables during the machining of a nickel-based superalloy.FindingsThe study explores that with the rise in spark-off time and spark gap voltage, the rate of wire tool consumption also escalates.Originality/valueMost of the researchers used the RSM technique for the optimization of process variables. The RSM generates a second-order regression model during the modeling and optimization of a manufacturing process whose major limitation is to fit the collected data to a second-order polynomial. The leading edge of ANN on the RSM is that it has comprehensive approximation capability, i.e. it can approximate virtually all types of nonlinear functions, including quadratic functions also.","PeriodicalId":45359,"journal":{"name":"International Journal of Structural Integrity","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A study of wire tool surface topography and optimization of wire electro-spark machined UNS N06690 using the federated mode of RSM-ANN\",\"authors\":\"A. Raj, J. P. Misra, D. Khanduja, V. Upadhyay\",\"doi\":\"10.1108/ijsi-09-2021-0101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThe purpose of this study is to examine the postprocessed wire tool surface using scanning electron microscopy and find out the streamlined conditions of input process variables using multi-objective optimization techniques to get minimum wire wear values.Design/methodology/approachA federated mode of response surface methodology (RSM) and artificial neural network (ANN) is used to optimize the process variables during the machining of a nickel-based superalloy.FindingsThe study explores that with the rise in spark-off time and spark gap voltage, the rate of wire tool consumption also escalates.Originality/valueMost of the researchers used the RSM technique for the optimization of process variables. The RSM generates a second-order regression model during the modeling and optimization of a manufacturing process whose major limitation is to fit the collected data to a second-order polynomial. The leading edge of ANN on the RSM is that it has comprehensive approximation capability, i.e. it can approximate virtually all types of nonlinear functions, including quadratic functions also.\",\"PeriodicalId\":45359,\"journal\":{\"name\":\"International Journal of Structural Integrity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2021-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Structural Integrity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijsi-09-2021-0101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijsi-09-2021-0101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

目的本研究的目的是使用扫描电子显微镜检查后处理的线工具表面,并使用多目标优化技术找出输入过程变量的流线型条件,以获得最小的线磨损值。设计/方法论/方法在镍基高温合金的加工过程中,使用响应面联合模式方法(RSM)和人工神经网络(ANN)来优化工艺变量。研究发现,随着火花熄灭时间和火花隙电压的增加,线工具的消耗率也会上升。原创性/价值大多数研究人员使用RSM技术来优化过程变量。RSM在制造过程的建模和优化过程中生成二阶回归模型,其主要限制是将收集的数据拟合为二阶多项式。神经网络在RSM上的领先优势在于它具有全面的逼近能力,即它几乎可以逼近所有类型的非线性函数,包括二次函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study of wire tool surface topography and optimization of wire electro-spark machined UNS N06690 using the federated mode of RSM-ANN
PurposeThe purpose of this study is to examine the postprocessed wire tool surface using scanning electron microscopy and find out the streamlined conditions of input process variables using multi-objective optimization techniques to get minimum wire wear values.Design/methodology/approachA federated mode of response surface methodology (RSM) and artificial neural network (ANN) is used to optimize the process variables during the machining of a nickel-based superalloy.FindingsThe study explores that with the rise in spark-off time and spark gap voltage, the rate of wire tool consumption also escalates.Originality/valueMost of the researchers used the RSM technique for the optimization of process variables. The RSM generates a second-order regression model during the modeling and optimization of a manufacturing process whose major limitation is to fit the collected data to a second-order polynomial. The leading edge of ANN on the RSM is that it has comprehensive approximation capability, i.e. it can approximate virtually all types of nonlinear functions, including quadratic functions also.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Structural Integrity
International Journal of Structural Integrity ENGINEERING, MULTIDISCIPLINARY-
CiteScore
5.40
自引率
14.80%
发文量
42
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信