云-雾边缘混合计算环境下基于分层和请求优先级的动态资源分配框架

IF 1.5 Q3 ENGINEERING, MULTIDISCIPLINARY
Sandip Patel, Ritesh Patel
{"title":"云-雾边缘混合计算环境下基于分层和请求优先级的动态资源分配框架","authors":"Sandip Patel, Ritesh Patel","doi":"10.33889/ijmems.2022.7.5.046","DOIUrl":null,"url":null,"abstract":"One of the most promising frameworks is the fog computing paradigm for time-sensitive applications such as IoT (Internet of Things). Though it is an extended type of computing paradigm, which is mainly used to support cloud computing for executing deadline-based user requirements in IoT applications. However, there are certain challenges related to the hybrid IoT -cloud environment such as poor latency, increased execution time, computational burden and overload on the computing nodes. This paper offers A Layer & Request priority-based framework for Dynamic Resource Allocation Method (LP-DRAM), a new approach based on layer priority for ensuring effective resource allocation in a fog-cloud architecture. By performing load balancing across the computer nodes, the suggested method achieves an effective resource allocation. Unlike conventional resource allocation techniques, the proposed work assumes that the node type and the location are not fixed. The tasks are allocated based on two constrain, duration and layer priority basis i.e, the tasks are initially assigned to edge computing nodes and based on the resource availability in edge nodes, the tasks are further allocated to fog and cloud computing nodes. The proposed approach's performance was analyzed by comparing it to existing methodologies such as First Fit (FF), Best Fit (BF), First Fit Decreasing (FFD), Best Fit Decreasing (BFD), and DRAM techniques to validate the effectiveness of the proposed LP-DRAM.","PeriodicalId":44185,"journal":{"name":"International Journal of Mathematical Engineering and Management Sciences","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Layer & Request Priority-based Framework for Dynamic Resource Allocation in Cloud- Fog - Edge Hybrid Computing Environment\",\"authors\":\"Sandip Patel, Ritesh Patel\",\"doi\":\"10.33889/ijmems.2022.7.5.046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most promising frameworks is the fog computing paradigm for time-sensitive applications such as IoT (Internet of Things). Though it is an extended type of computing paradigm, which is mainly used to support cloud computing for executing deadline-based user requirements in IoT applications. However, there are certain challenges related to the hybrid IoT -cloud environment such as poor latency, increased execution time, computational burden and overload on the computing nodes. This paper offers A Layer & Request priority-based framework for Dynamic Resource Allocation Method (LP-DRAM), a new approach based on layer priority for ensuring effective resource allocation in a fog-cloud architecture. By performing load balancing across the computer nodes, the suggested method achieves an effective resource allocation. Unlike conventional resource allocation techniques, the proposed work assumes that the node type and the location are not fixed. The tasks are allocated based on two constrain, duration and layer priority basis i.e, the tasks are initially assigned to edge computing nodes and based on the resource availability in edge nodes, the tasks are further allocated to fog and cloud computing nodes. The proposed approach's performance was analyzed by comparing it to existing methodologies such as First Fit (FF), Best Fit (BF), First Fit Decreasing (FFD), Best Fit Decreasing (BFD), and DRAM techniques to validate the effectiveness of the proposed LP-DRAM.\",\"PeriodicalId\":44185,\"journal\":{\"name\":\"International Journal of Mathematical Engineering and Management Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematical Engineering and Management Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33889/ijmems.2022.7.5.046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematical Engineering and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33889/ijmems.2022.7.5.046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

最有前途的框架之一是雾计算范式,用于时间敏感型应用程序,如IoT(物联网)。虽然它是一种扩展类型的计算范式,但主要用于支持云计算,以执行物联网应用中基于截止日期的用户需求。然而,物联网-云混合环境存在一些挑战,例如延迟差、执行时间增加、计算负担和计算节点过载。本文提出了一种基于层和请求优先级的动态资源分配方法(LP-DRAM)框架,这是一种在雾云架构中确保有效资源分配的一种基于层优先级的新方法。通过在计算机节点之间执行负载平衡,该方法实现了有效的资源分配。与传统的资源分配技术不同,所提出的工作假设节点类型和位置不固定。任务分配基于持续时间和层优先级两个约束,即首先将任务分配给边缘计算节点,然后根据边缘节点的资源可用性进一步分配给雾计算和云计算节点。通过将所提出的方法与现有方法(如First Fit (FF)、Best Fit (BF)、First Fit reduction (FFD)、Best Fit reduction (BFD)和DRAM技术)进行比较,分析了所提出方法的性能,以验证所提出的LP-DRAM技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Layer & Request Priority-based Framework for Dynamic Resource Allocation in Cloud- Fog - Edge Hybrid Computing Environment
One of the most promising frameworks is the fog computing paradigm for time-sensitive applications such as IoT (Internet of Things). Though it is an extended type of computing paradigm, which is mainly used to support cloud computing for executing deadline-based user requirements in IoT applications. However, there are certain challenges related to the hybrid IoT -cloud environment such as poor latency, increased execution time, computational burden and overload on the computing nodes. This paper offers A Layer & Request priority-based framework for Dynamic Resource Allocation Method (LP-DRAM), a new approach based on layer priority for ensuring effective resource allocation in a fog-cloud architecture. By performing load balancing across the computer nodes, the suggested method achieves an effective resource allocation. Unlike conventional resource allocation techniques, the proposed work assumes that the node type and the location are not fixed. The tasks are allocated based on two constrain, duration and layer priority basis i.e, the tasks are initially assigned to edge computing nodes and based on the resource availability in edge nodes, the tasks are further allocated to fog and cloud computing nodes. The proposed approach's performance was analyzed by comparing it to existing methodologies such as First Fit (FF), Best Fit (BF), First Fit Decreasing (FFD), Best Fit Decreasing (BFD), and DRAM techniques to validate the effectiveness of the proposed LP-DRAM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
6.20%
发文量
57
审稿时长
20 weeks
期刊介绍: IJMEMS is a peer reviewed international journal aiming on both the theoretical and practical aspects of mathematical, engineering and management sciences. The original, not-previously published, research manuscripts on topics such as the following (but not limited to) will be considered for publication: *Mathematical Sciences- applied mathematics and allied fields, operations research, mathematical statistics. *Engineering Sciences- computer science engineering, mechanical engineering, information technology engineering, civil engineering, aeronautical engineering, industrial engineering, systems engineering, reliability engineering, production engineering. *Management Sciences- engineering management, risk management, business models, supply chain management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信