Arodh Lal Karn, V. Sachin, Sudhakar Sengan, I. V., Logesh Ravi, Dilip Kumar Sharma, S. V.
{"title":"设计基于深度学习的金融科技金融决策支持系统,支持企业客户的授信","authors":"Arodh Lal Karn, V. Sachin, Sudhakar Sengan, I. V., Logesh Ravi, Dilip Kumar Sharma, S. V.","doi":"10.22452/mjcs.sp2022no1.9","DOIUrl":null,"url":null,"abstract":"In the banking business, Machine Learning (ML) is critical for averting financial losses. Credit risk evaluation is perhaps the most important prediction task that may result in billions of dollars in damages each year (i.e., the risk of default on debt). Gradient Boosted Decision Tree (GBDT) models are now responsible for a large portion of the improvements in ML for predicting credit risk. However, these improvements begin to stagnate without adding pricey new data sources or carefully designed features. In this work, we describe our efforts to develop a unique Deep Learning (DL)-based technique for assessing credit risk that does not rely on additional model inputs. We present a new credit decision support approach with Gated Recurrent Unit (GRU) and Convolutional Neural Networks (CNN) that uses lengthy historical sequences of financial data while requiring few resources. We show that our DL technique, which uses Term Frequency-Inverse Document Frequency (TF-IDF) pre-classifiers, outperforms the benchmark models, resulting in considerable cost savings and early credit risk identification. We also show how our method may be utilized in a production setting, where our sampling methodology allows sequences to be effectively kept in memory and used for quick online learning and inference.","PeriodicalId":49894,"journal":{"name":"Malaysian Journal of Computer Science","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"DESIGNING A DEEP LEARNING-BASED FINANCIAL DECISION SUPPORT SYSTEM FOR FINTECH TO SUPPORT CORPORATE CUSTOMER’S CREDIT EXTENSION\",\"authors\":\"Arodh Lal Karn, V. Sachin, Sudhakar Sengan, I. V., Logesh Ravi, Dilip Kumar Sharma, S. V.\",\"doi\":\"10.22452/mjcs.sp2022no1.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the banking business, Machine Learning (ML) is critical for averting financial losses. Credit risk evaluation is perhaps the most important prediction task that may result in billions of dollars in damages each year (i.e., the risk of default on debt). Gradient Boosted Decision Tree (GBDT) models are now responsible for a large portion of the improvements in ML for predicting credit risk. However, these improvements begin to stagnate without adding pricey new data sources or carefully designed features. In this work, we describe our efforts to develop a unique Deep Learning (DL)-based technique for assessing credit risk that does not rely on additional model inputs. We present a new credit decision support approach with Gated Recurrent Unit (GRU) and Convolutional Neural Networks (CNN) that uses lengthy historical sequences of financial data while requiring few resources. We show that our DL technique, which uses Term Frequency-Inverse Document Frequency (TF-IDF) pre-classifiers, outperforms the benchmark models, resulting in considerable cost savings and early credit risk identification. We also show how our method may be utilized in a production setting, where our sampling methodology allows sequences to be effectively kept in memory and used for quick online learning and inference.\",\"PeriodicalId\":49894,\"journal\":{\"name\":\"Malaysian Journal of Computer Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Malaysian Journal of Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.22452/mjcs.sp2022no1.9\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.22452/mjcs.sp2022no1.9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
DESIGNING A DEEP LEARNING-BASED FINANCIAL DECISION SUPPORT SYSTEM FOR FINTECH TO SUPPORT CORPORATE CUSTOMER’S CREDIT EXTENSION
In the banking business, Machine Learning (ML) is critical for averting financial losses. Credit risk evaluation is perhaps the most important prediction task that may result in billions of dollars in damages each year (i.e., the risk of default on debt). Gradient Boosted Decision Tree (GBDT) models are now responsible for a large portion of the improvements in ML for predicting credit risk. However, these improvements begin to stagnate without adding pricey new data sources or carefully designed features. In this work, we describe our efforts to develop a unique Deep Learning (DL)-based technique for assessing credit risk that does not rely on additional model inputs. We present a new credit decision support approach with Gated Recurrent Unit (GRU) and Convolutional Neural Networks (CNN) that uses lengthy historical sequences of financial data while requiring few resources. We show that our DL technique, which uses Term Frequency-Inverse Document Frequency (TF-IDF) pre-classifiers, outperforms the benchmark models, resulting in considerable cost savings and early credit risk identification. We also show how our method may be utilized in a production setting, where our sampling methodology allows sequences to be effectively kept in memory and used for quick online learning and inference.
期刊介绍:
The Malaysian Journal of Computer Science (ISSN 0127-9084) is published four times a year in January, April, July and October by the Faculty of Computer Science and Information Technology, University of Malaya, since 1985. Over the years, the journal has gained popularity and the number of paper submissions has increased steadily. The rigorous reviews from the referees have helped in ensuring that the high standard of the journal is maintained. The objectives are to promote exchange of information and knowledge in research work, new inventions/developments of Computer Science and on the use of Information Technology towards the structuring of an information-rich society and to assist the academic staff from local and foreign universities, business and industrial sectors, government departments and academic institutions on publishing research results and studies in Computer Science and Information Technology through a scholarly publication. The journal is being indexed and abstracted by Clarivate Analytics'' Web of Science and Elsevier''s Scopus