基于生物可降解金属的骨应用药物装置系统:潜力、发展和挑战

IF 5.3 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Abdul Hakim Md Yusop , Murni Nazira Sarian , Fatihhi Szali Januddi , Hadi Nur
{"title":"基于生物可降解金属的骨应用药物装置系统:潜力、发展和挑战","authors":"Abdul Hakim Md Yusop ,&nbsp;Murni Nazira Sarian ,&nbsp;Fatihhi Szali Januddi ,&nbsp;Hadi Nur","doi":"10.1016/j.bbe.2022.11.002","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Drug-device systems based on biodegradable metals have been of great interest in the last decade due to their local-release regime and the ability of the biodegradable metals to degrade in the physiological environment facilitating tissue growth and gradual load transfer. The </span>biodegradability of the biodegradable metals provides a promising medium that might enable other materials – such as drugs, </span>bioactive materials and therapeutic agents - to be incorporated into the degradable metals to act as a drug-device system that would locally release the drugs or therapeutic agents onto the healing tissue. In comparison to systemic drug delivery, the locally released drug-device system makes the dose control over a specific targeted tissue more efficient and reduces the side effects on non-targeted tissues. This review outlines the current state of development of the biodegradable metals-based drug-device system and focuses in-depth on the potential interactions between the drugs, degradable metallic surfaces, drug carriers, ions and proteins inside the body fluids, which can be a challenge to producing a highly efficient drug-device system.</p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Drug-device systems based on biodegradable metals for bone applications: Potential, development and challenges\",\"authors\":\"Abdul Hakim Md Yusop ,&nbsp;Murni Nazira Sarian ,&nbsp;Fatihhi Szali Januddi ,&nbsp;Hadi Nur\",\"doi\":\"10.1016/j.bbe.2022.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Drug-device systems based on biodegradable metals have been of great interest in the last decade due to their local-release regime and the ability of the biodegradable metals to degrade in the physiological environment facilitating tissue growth and gradual load transfer. The </span>biodegradability of the biodegradable metals provides a promising medium that might enable other materials – such as drugs, </span>bioactive materials and therapeutic agents - to be incorporated into the degradable metals to act as a drug-device system that would locally release the drugs or therapeutic agents onto the healing tissue. In comparison to systemic drug delivery, the locally released drug-device system makes the dose control over a specific targeted tissue more efficient and reduces the side effects on non-targeted tissues. This review outlines the current state of development of the biodegradable metals-based drug-device system and focuses in-depth on the potential interactions between the drugs, degradable metallic surfaces, drug carriers, ions and proteins inside the body fluids, which can be a challenge to producing a highly efficient drug-device system.</p></div>\",\"PeriodicalId\":55381,\"journal\":{\"name\":\"Biocybernetics and Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocybernetics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0208521622000985\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0208521622000985","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 2

摘要

在过去的十年中,基于生物可降解金属的药物装置系统由于其局部释放机制和生物可降解金属在生理环境中降解促进组织生长和逐渐负荷转移的能力而引起了极大的兴趣。生物可降解金属的生物可降解性提供了一种很有前途的介质,它可能使其他材料——如药物、生物活性材料和治疗剂——被纳入可降解金属中,作为一种药物装置系统,将药物或治疗剂局部释放到愈合组织中。与全身给药相比,局部释放的药物装置系统可以更有效地控制特定靶向组织的剂量,并减少对非靶向组织的副作用。本文综述了基于生物可降解金属的药物装置系统的发展现状,重点介绍了药物、可降解金属表面、药物载体、离子和蛋白质在体液中的潜在相互作用,这是生产高效药物装置系统的一个挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Drug-device systems based on biodegradable metals for bone applications: Potential, development and challenges

Drug-device systems based on biodegradable metals have been of great interest in the last decade due to their local-release regime and the ability of the biodegradable metals to degrade in the physiological environment facilitating tissue growth and gradual load transfer. The biodegradability of the biodegradable metals provides a promising medium that might enable other materials – such as drugs, bioactive materials and therapeutic agents - to be incorporated into the degradable metals to act as a drug-device system that would locally release the drugs or therapeutic agents onto the healing tissue. In comparison to systemic drug delivery, the locally released drug-device system makes the dose control over a specific targeted tissue more efficient and reduces the side effects on non-targeted tissues. This review outlines the current state of development of the biodegradable metals-based drug-device system and focuses in-depth on the potential interactions between the drugs, degradable metallic surfaces, drug carriers, ions and proteins inside the body fluids, which can be a challenge to producing a highly efficient drug-device system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.50
自引率
6.20%
发文量
77
审稿时长
38 days
期刊介绍: Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信