{"title":"线性多级放大器的稳定性","authors":"Janos Ladvanszky","doi":"10.4236/CS.2018.911017","DOIUrl":null,"url":null,"abstract":"In a given linear, multistage, cascaded amplifier [1] comprising passive coupling circuits and active two-ports alternatively, the problem is where in the amplifier the stabilizing circuit elements should be placed to eliminate instability, and of what type and value. Our investigations are based on a new recursive formula for the determinant of tridiagonal matrices. Relation of our results to the Stern stability factor has been obtained. A verification in numerical examples has also been provided.","PeriodicalId":63422,"journal":{"name":"电路与系统(英文)","volume":"09 1","pages":"169-195"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stabilization of Linear Multistage Amplifiers\",\"authors\":\"Janos Ladvanszky\",\"doi\":\"10.4236/CS.2018.911017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a given linear, multistage, cascaded amplifier [1] comprising passive coupling circuits and active two-ports alternatively, the problem is where in the amplifier the stabilizing circuit elements should be placed to eliminate instability, and of what type and value. Our investigations are based on a new recursive formula for the determinant of tridiagonal matrices. Relation of our results to the Stern stability factor has been obtained. A verification in numerical examples has also been provided.\",\"PeriodicalId\":63422,\"journal\":{\"name\":\"电路与系统(英文)\",\"volume\":\"09 1\",\"pages\":\"169-195\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"电路与系统(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/CS.2018.911017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"电路与系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/CS.2018.911017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In a given linear, multistage, cascaded amplifier [1] comprising passive coupling circuits and active two-ports alternatively, the problem is where in the amplifier the stabilizing circuit elements should be placed to eliminate instability, and of what type and value. Our investigations are based on a new recursive formula for the determinant of tridiagonal matrices. Relation of our results to the Stern stability factor has been obtained. A verification in numerical examples has also been provided.