{"title":"一种生成治疗幼稚活检衍生的弥漫性固有脑桥胶质瘤和弥漫性中线胶质瘤模型的方案","authors":"","doi":"10.33696/neurol.1.025","DOIUrl":null,"url":null,"abstract":"Diffuse intrinsic pontine glioma (DIPG) is a universally fatal tumor of the brainstem, most commonly affecting young children. Due to its location, surgical resection is not achievable, but consideration of a biopsy has become standard practice at children’s hospitals with the appropriate neurosurgical expertise. While the decision to obtain a biopsy should be directed by the presence of atypical radiographic features that call the diagnosis of DIPG into question or the requirement of biopsy tissue for clinical trial enrollment, once this precious tissue is available its use for research should be considered. The majority of DIPG and diffuse midline glioma, H3 K27Mmutant (DMG) models are autopsy-derived or genetically-engineered, each of which has limitations for translational studies, so the use of biopsy tissue for laboratory model development provides an opportunity to create unique model systems. Here, we present a detailed laboratory protocol for the generation of treatment-naïve biopsy-derived DIPG/DMG models. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. http://creativecommons.org/ licenses/by/4.0/ Correspondence should be addressed to Nicholas A. Vitanza; nicholas.vitanza@seattlechildrens.org. Authorship MCB, AN, CM, SMM, CAW, FP, JMO, and NAV participated in the design or interpretation of the reported experiments or results. MCB, AN, CM, SMM, CAW, FP, BLC, SRB, and NAV participated in the acquisition or analysis of data. MCB, AN, and NAV wrote the manuscript with revisions and approval from all authors. NAV supervised all aspects of the research. Conflicts of Interest None. HHS Public Access Author manuscript J Exp Neurol. Author manuscript; available in PMC 2021 March 24. Published in final edited form as: J Exp Neurol. 2020 December ; 1(4): 158–167. doi:10.33696//Neurol.1.025. A uhor M anscript","PeriodicalId":73744,"journal":{"name":"Journal of experimental neurology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Protocol for the Generation of Treatment-naïve Biopsyderived Diffuse Intrinsic Pontine Glioma and Diffuse Midline Glioma Models\",\"authors\":\"\",\"doi\":\"10.33696/neurol.1.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diffuse intrinsic pontine glioma (DIPG) is a universally fatal tumor of the brainstem, most commonly affecting young children. Due to its location, surgical resection is not achievable, but consideration of a biopsy has become standard practice at children’s hospitals with the appropriate neurosurgical expertise. While the decision to obtain a biopsy should be directed by the presence of atypical radiographic features that call the diagnosis of DIPG into question or the requirement of biopsy tissue for clinical trial enrollment, once this precious tissue is available its use for research should be considered. The majority of DIPG and diffuse midline glioma, H3 K27Mmutant (DMG) models are autopsy-derived or genetically-engineered, each of which has limitations for translational studies, so the use of biopsy tissue for laboratory model development provides an opportunity to create unique model systems. Here, we present a detailed laboratory protocol for the generation of treatment-naïve biopsy-derived DIPG/DMG models. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. http://creativecommons.org/ licenses/by/4.0/ Correspondence should be addressed to Nicholas A. Vitanza; nicholas.vitanza@seattlechildrens.org. Authorship MCB, AN, CM, SMM, CAW, FP, JMO, and NAV participated in the design or interpretation of the reported experiments or results. MCB, AN, CM, SMM, CAW, FP, BLC, SRB, and NAV participated in the acquisition or analysis of data. MCB, AN, and NAV wrote the manuscript with revisions and approval from all authors. NAV supervised all aspects of the research. Conflicts of Interest None. HHS Public Access Author manuscript J Exp Neurol. Author manuscript; available in PMC 2021 March 24. Published in final edited form as: J Exp Neurol. 2020 December ; 1(4): 158–167. doi:10.33696//Neurol.1.025. A uhor M anscript\",\"PeriodicalId\":73744,\"journal\":{\"name\":\"Journal of experimental neurology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of experimental neurology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33696/neurol.1.025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of experimental neurology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33696/neurol.1.025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Protocol for the Generation of Treatment-naïve Biopsyderived Diffuse Intrinsic Pontine Glioma and Diffuse Midline Glioma Models
Diffuse intrinsic pontine glioma (DIPG) is a universally fatal tumor of the brainstem, most commonly affecting young children. Due to its location, surgical resection is not achievable, but consideration of a biopsy has become standard practice at children’s hospitals with the appropriate neurosurgical expertise. While the decision to obtain a biopsy should be directed by the presence of atypical radiographic features that call the diagnosis of DIPG into question or the requirement of biopsy tissue for clinical trial enrollment, once this precious tissue is available its use for research should be considered. The majority of DIPG and diffuse midline glioma, H3 K27Mmutant (DMG) models are autopsy-derived or genetically-engineered, each of which has limitations for translational studies, so the use of biopsy tissue for laboratory model development provides an opportunity to create unique model systems. Here, we present a detailed laboratory protocol for the generation of treatment-naïve biopsy-derived DIPG/DMG models. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. http://creativecommons.org/ licenses/by/4.0/ Correspondence should be addressed to Nicholas A. Vitanza; nicholas.vitanza@seattlechildrens.org. Authorship MCB, AN, CM, SMM, CAW, FP, JMO, and NAV participated in the design or interpretation of the reported experiments or results. MCB, AN, CM, SMM, CAW, FP, BLC, SRB, and NAV participated in the acquisition or analysis of data. MCB, AN, and NAV wrote the manuscript with revisions and approval from all authors. NAV supervised all aspects of the research. Conflicts of Interest None. HHS Public Access Author manuscript J Exp Neurol. Author manuscript; available in PMC 2021 March 24. Published in final edited form as: J Exp Neurol. 2020 December ; 1(4): 158–167. doi:10.33696//Neurol.1.025. A uhor M anscript