{"title":"两个事件的故事:北极雨对雪的气象驱动因素","authors":"Jessica Voveris, M. Serreze","doi":"10.1017/aog.2023.25","DOIUrl":null,"url":null,"abstract":"\n Arctic rain-on-snow (ROS) events can have significant impacts on Arctic wildlife and socio-economic systems. This study addresses the meteorology of two different Arctic ROS events. The first, occurring near Nuuk, Greenland, generated significant impacts, including slush avalanches. The second, less severe, event occurred within the community of Iqaluit, Nunavut, Canada. This research utilizes atmospheric reanalysis, automated surface observation station data and atmospheric soundings to determine the meteorological conditions driving these events and the differences between each case. In both cases, atmospheric blocking played a leading role in ROS initiation, with atmospheric rivers – narrow bands of high water vapor transport, typically originating from the tropics and subtropics – having both direct and indirect effects. Cyclone-induced low-level jets and resultant ‘warm noses’ of higher air temperatures and moisture transport were other key features in ROS generation. To our knowledge, our study is the first to visualize how the varying strength and manifestation of these coupled features contribute to differences in the severity of Arctic ROS events. The meteorological drivers identified here find support from other studies on Arctic ROS events and are similar to weather features associated with Arctic precipitation events of extreme magnitude.","PeriodicalId":8211,"journal":{"name":"Annals of Glaciology","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A tale of two events: Arctic rain-on-snow meteorological drivers\",\"authors\":\"Jessica Voveris, M. Serreze\",\"doi\":\"10.1017/aog.2023.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Arctic rain-on-snow (ROS) events can have significant impacts on Arctic wildlife and socio-economic systems. This study addresses the meteorology of two different Arctic ROS events. The first, occurring near Nuuk, Greenland, generated significant impacts, including slush avalanches. The second, less severe, event occurred within the community of Iqaluit, Nunavut, Canada. This research utilizes atmospheric reanalysis, automated surface observation station data and atmospheric soundings to determine the meteorological conditions driving these events and the differences between each case. In both cases, atmospheric blocking played a leading role in ROS initiation, with atmospheric rivers – narrow bands of high water vapor transport, typically originating from the tropics and subtropics – having both direct and indirect effects. Cyclone-induced low-level jets and resultant ‘warm noses’ of higher air temperatures and moisture transport were other key features in ROS generation. To our knowledge, our study is the first to visualize how the varying strength and manifestation of these coupled features contribute to differences in the severity of Arctic ROS events. The meteorological drivers identified here find support from other studies on Arctic ROS events and are similar to weather features associated with Arctic precipitation events of extreme magnitude.\",\"PeriodicalId\":8211,\"journal\":{\"name\":\"Annals of Glaciology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Glaciology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1017/aog.2023.25\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Glaciology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/aog.2023.25","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
A tale of two events: Arctic rain-on-snow meteorological drivers
Arctic rain-on-snow (ROS) events can have significant impacts on Arctic wildlife and socio-economic systems. This study addresses the meteorology of two different Arctic ROS events. The first, occurring near Nuuk, Greenland, generated significant impacts, including slush avalanches. The second, less severe, event occurred within the community of Iqaluit, Nunavut, Canada. This research utilizes atmospheric reanalysis, automated surface observation station data and atmospheric soundings to determine the meteorological conditions driving these events and the differences between each case. In both cases, atmospheric blocking played a leading role in ROS initiation, with atmospheric rivers – narrow bands of high water vapor transport, typically originating from the tropics and subtropics – having both direct and indirect effects. Cyclone-induced low-level jets and resultant ‘warm noses’ of higher air temperatures and moisture transport were other key features in ROS generation. To our knowledge, our study is the first to visualize how the varying strength and manifestation of these coupled features contribute to differences in the severity of Arctic ROS events. The meteorological drivers identified here find support from other studies on Arctic ROS events and are similar to weather features associated with Arctic precipitation events of extreme magnitude.
期刊介绍:
Annals of Glaciology publishes original scientific articles and letters in selected aspects of glaciology-the study of ice. Each issue of the Annals is thematic, focussing on a specific subject. The Council of the International Glaciological Society welcomes proposals for thematic issues from the glaciological community. Once a theme is approved, the Council appoints an Associate Chief Editor and a team of Scientific Editors to handle the submission, peer review and publication of papers.