负偏置温度不稳定性感知CMOS逻辑的研究

Q3 Engineering
Kajal, V. Sharma
{"title":"负偏置温度不稳定性感知CMOS逻辑的研究","authors":"Kajal, V. Sharma","doi":"10.2174/1876402913666210125144339","DOIUrl":null,"url":null,"abstract":"\n\n Scaling of the dimensions of semiconductor device plays a very important role in the advancement\nof very large-scale integration (VLSI) technology. There are many advantages of scaling in VLSI technology such as\nincrement in the speed of the device and less area requirement of the device. Aggressive device scaling causes some\nlimitations in the form of short channel effects which produce large leakage current. Large leakage current harms the\ncharacteristics of the device and affects the reliability of the device.\n\n\n\nThe most important and popular reliability issue in deep submicron (DSM) regime is negative-bias temperature\ninstability (NBTI). NBTI effect increases the threshold voltage of p-channel metal oxide semiconductor (PMOS) device\nover the time and affects the different characteristics of the device. As a result, circuit delay exceeds the design specification\nand there may be timing violations or logic failure. Different performance parameters are observed under NBTI effect for\ndifferent logic gates.\n\n\n\n This paper presents an impact of NBTI at 22nm Berkeley short-channel IGFET model4 (BSIM4) predictive\ntechnology model (PTM) for complementary metal oxide semiconductor (CMOS) logic gates. Reliability simulations are\nutilised to evaluate the amount of gradual damage in PMOS device due to NBTI effect.\n\n\n\nThe impact of NBTI degradation is checked for various CMOS logic gates using Mentor Graphics’s Eldo circuit\nsimulator. Output voltage and drain current are reducing over the time under NBTI effect.\n\n\n\nNBTI degradation increases the threshold voltage of PMOS device over the time and affects the different\ncharacteristics of the device.\n","PeriodicalId":18543,"journal":{"name":"Micro and Nanosystems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Investigation for the Negative-Bias Temperature Instability Aware CMOS Logic\",\"authors\":\"Kajal, V. Sharma\",\"doi\":\"10.2174/1876402913666210125144339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\n Scaling of the dimensions of semiconductor device plays a very important role in the advancement\\nof very large-scale integration (VLSI) technology. There are many advantages of scaling in VLSI technology such as\\nincrement in the speed of the device and less area requirement of the device. Aggressive device scaling causes some\\nlimitations in the form of short channel effects which produce large leakage current. Large leakage current harms the\\ncharacteristics of the device and affects the reliability of the device.\\n\\n\\n\\nThe most important and popular reliability issue in deep submicron (DSM) regime is negative-bias temperature\\ninstability (NBTI). NBTI effect increases the threshold voltage of p-channel metal oxide semiconductor (PMOS) device\\nover the time and affects the different characteristics of the device. As a result, circuit delay exceeds the design specification\\nand there may be timing violations or logic failure. Different performance parameters are observed under NBTI effect for\\ndifferent logic gates.\\n\\n\\n\\n This paper presents an impact of NBTI at 22nm Berkeley short-channel IGFET model4 (BSIM4) predictive\\ntechnology model (PTM) for complementary metal oxide semiconductor (CMOS) logic gates. Reliability simulations are\\nutilised to evaluate the amount of gradual damage in PMOS device due to NBTI effect.\\n\\n\\n\\nThe impact of NBTI degradation is checked for various CMOS logic gates using Mentor Graphics’s Eldo circuit\\nsimulator. Output voltage and drain current are reducing over the time under NBTI effect.\\n\\n\\n\\nNBTI degradation increases the threshold voltage of PMOS device over the time and affects the different\\ncharacteristics of the device.\\n\",\"PeriodicalId\":18543,\"journal\":{\"name\":\"Micro and Nanosystems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanosystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1876402913666210125144339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1876402913666210125144339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

半导体器件尺寸的缩小对超大规模集成电路(VLSI)技术的发展起着非常重要的作用。超大规模集成电路技术具有许多优点,如器件速度的提高和器件面积的减少。侵略性的器件缩放导致一些限制,以产生大泄漏电流的短通道效应的形式。大的泄漏电流会损害器件的特性,影响器件的可靠性。深亚微米(DSM)系统中最重要和最受欢迎的可靠性问题是负偏置温度不稳定性(NBTI)。NBTI效应使p沟道金属氧化物半导体(PMOS)器件的阈值电压随着时间的推移而增加,并影响器件的不同特性。因此,电路延迟超过设计规格,可能会出现时序违规或逻辑故障。不同逻辑门在NBTI效应下的性能参数不同。本文介绍了NBTI在22nm Berkeley短沟道IGFET model4 (BSIM4)预测技术模型(PTM)对互补金属氧化物半导体(CMOS)逻辑门的影响。利用可靠性模拟来评估由于NBTI效应引起的PMOS器件的逐渐损伤量。使用Mentor Graphics的Eldo电路模拟器检查NBTI退化对各种CMOS逻辑门的影响。在NBTI效应下,输出电压和漏极电流随时间减小。NBTI降解使PMOS器件的阈值电压随着时间的推移而增加,并影响器件的不同特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Investigation for the Negative-Bias Temperature Instability Aware CMOS Logic
Scaling of the dimensions of semiconductor device plays a very important role in the advancement of very large-scale integration (VLSI) technology. There are many advantages of scaling in VLSI technology such as increment in the speed of the device and less area requirement of the device. Aggressive device scaling causes some limitations in the form of short channel effects which produce large leakage current. Large leakage current harms the characteristics of the device and affects the reliability of the device. The most important and popular reliability issue in deep submicron (DSM) regime is negative-bias temperature instability (NBTI). NBTI effect increases the threshold voltage of p-channel metal oxide semiconductor (PMOS) device over the time and affects the different characteristics of the device. As a result, circuit delay exceeds the design specification and there may be timing violations or logic failure. Different performance parameters are observed under NBTI effect for different logic gates. This paper presents an impact of NBTI at 22nm Berkeley short-channel IGFET model4 (BSIM4) predictive technology model (PTM) for complementary metal oxide semiconductor (CMOS) logic gates. Reliability simulations are utilised to evaluate the amount of gradual damage in PMOS device due to NBTI effect. The impact of NBTI degradation is checked for various CMOS logic gates using Mentor Graphics’s Eldo circuit simulator. Output voltage and drain current are reducing over the time under NBTI effect. NBTI degradation increases the threshold voltage of PMOS device over the time and affects the different characteristics of the device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micro and Nanosystems
Micro and Nanosystems Engineering-Building and Construction
CiteScore
1.60
自引率
0.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信