关于严格测试深度学习认知模型的重要性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Jeffrey S. Bowers , Gaurav Malhotra , Federico Adolfi , Marin Dujmović , Milton L. Montero , Valerio Biscione , Guillermo Puebla , John H. Hummel , Rachel F. Heaton
{"title":"关于严格测试深度学习认知模型的重要性","authors":"Jeffrey S. Bowers ,&nbsp;Gaurav Malhotra ,&nbsp;Federico Adolfi ,&nbsp;Marin Dujmović ,&nbsp;Milton L. Montero ,&nbsp;Valerio Biscione ,&nbsp;Guillermo Puebla ,&nbsp;John H. Hummel ,&nbsp;Rachel F. Heaton","doi":"10.1016/j.cogsys.2023.101158","DOIUrl":null,"url":null,"abstract":"<div><p>Researchers studying the correspondences between Deep Neural Networks (DNNs) and humans often give little consideration to severe testing when drawing conclusions from empirical findings, and this is impeding progress in building better models of minds. We first detail what we mean by severe testing and highlight how this is especially important when working with opaque models with many free parameters that may solve a given task in multiple different ways. Second, we provide multiple examples of researchers making strong claims regarding DNN-human similarities without engaging in severe testing of their hypotheses. Third, we consider why severe testing is undervalued. We provide evidence that part of the fault lies with the review process. There is now a widespread appreciation in many areas of science that a bias for publishing positive results (among other practices) is leading to a credibility crisis, but there seems less awareness of the problem here.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the importance of severely testing deep learning models of cognition\",\"authors\":\"Jeffrey S. Bowers ,&nbsp;Gaurav Malhotra ,&nbsp;Federico Adolfi ,&nbsp;Marin Dujmović ,&nbsp;Milton L. Montero ,&nbsp;Valerio Biscione ,&nbsp;Guillermo Puebla ,&nbsp;John H. Hummel ,&nbsp;Rachel F. Heaton\",\"doi\":\"10.1016/j.cogsys.2023.101158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Researchers studying the correspondences between Deep Neural Networks (DNNs) and humans often give little consideration to severe testing when drawing conclusions from empirical findings, and this is impeding progress in building better models of minds. We first detail what we mean by severe testing and highlight how this is especially important when working with opaque models with many free parameters that may solve a given task in multiple different ways. Second, we provide multiple examples of researchers making strong claims regarding DNN-human similarities without engaging in severe testing of their hypotheses. Third, we consider why severe testing is undervalued. We provide evidence that part of the fault lies with the review process. There is now a widespread appreciation in many areas of science that a bias for publishing positive results (among other practices) is leading to a credibility crisis, but there seems less awareness of the problem here.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S138904172300092X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138904172300092X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

摘要

研究深度神经网络(dnn)与人类之间对应关系的研究人员在从经验发现中得出结论时,往往很少考虑严格的测试,这阻碍了建立更好的思维模型的进展。我们首先详细说明严格测试的含义,并强调在使用具有许多自由参数的不透明模型时,这一点特别重要,这些模型可能以多种不同的方式解决给定的任务。其次,我们提供了多个研究人员在没有对他们的假设进行严格测试的情况下就dnn -人类相似性提出强烈主张的例子。第三,我们考虑为什么严格的测试被低估了。我们提供的证据表明,部分错误在于审查过程。现在,在许多科学领域,人们普遍认识到,发表积极结果的偏见(以及其他做法)正在导致可信度危机,但在这里,人们似乎对这个问题的认识较少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the importance of severely testing deep learning models of cognition

Researchers studying the correspondences between Deep Neural Networks (DNNs) and humans often give little consideration to severe testing when drawing conclusions from empirical findings, and this is impeding progress in building better models of minds. We first detail what we mean by severe testing and highlight how this is especially important when working with opaque models with many free parameters that may solve a given task in multiple different ways. Second, we provide multiple examples of researchers making strong claims regarding DNN-human similarities without engaging in severe testing of their hypotheses. Third, we consider why severe testing is undervalued. We provide evidence that part of the fault lies with the review process. There is now a widespread appreciation in many areas of science that a bias for publishing positive results (among other practices) is leading to a credibility crisis, but there seems less awareness of the problem here.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信