Martin Skarzynski, Erin M McAuley, Ezekiel J Maier, Anthony C Fries, Jameson D Voss, Richard R Chapleau
{"title":"基于严重急性呼吸系统综合征冠状病毒2型基因组的严重性预测与较低的qPCR值和较高的病毒载量相对应","authors":"Martin Skarzynski, Erin M McAuley, Ezekiel J Maier, Anthony C Fries, Jameson D Voss, Richard R Chapleau","doi":"10.1155/2022/6499217","DOIUrl":null,"url":null,"abstract":"<p><p>The 2019 coronavirus disease (COVID-19) pandemic has demonstrated the importance of predicting, identifying, and tracking mutations throughout a pandemic event. As the COVID-19 global pandemic surpassed one year, several variants had emerged resulting in increased severity and transmissibility. Here, we used PCR as a surrogate for viral load and consequent severity to evaluate the real-world capabilities of a genome-based clinical severity predictive algorithm. Using a previously published algorithm, we compared the viral genome-based severity predictions to clinically derived PCR-based viral load of 716 viral genomes. For those samples predicted to be \"severe\" (probability of severe illness >0.5), we observed an average cycle threshold (Ct) of 18.3, whereas those in in the \"mild\" category (severity probability <0.5) had an average Ct of 20.4 (<i>P</i>=0.0017). We also found a nontrivial correlation between predicted severity probability and cycle threshold (<i>r</i> = -0.199). Finally, when divided into severity probability quartiles, the group most likely to experience severe illness (≥75% probability) had a Ct of 16.6 (<i>n</i> = 10), whereas the group least likely to experience severe illness (<25% probability) had a Ct of 21.4 (<i>n</i> = 350) (<i>P</i>=0.0045). Taken together, our results suggest that the severity predicted by a genome-based algorithm can be related to clinical diagnostic tests and that relative severity may be inferred from diagnostic values.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9173902/pdf/","citationCount":"0","resultStr":"{\"title\":\"SARS-CoV-2 Genome-Based Severity Predictions Correspond to Lower qPCR Values and Higher Viral Load.\",\"authors\":\"Martin Skarzynski, Erin M McAuley, Ezekiel J Maier, Anthony C Fries, Jameson D Voss, Richard R Chapleau\",\"doi\":\"10.1155/2022/6499217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The 2019 coronavirus disease (COVID-19) pandemic has demonstrated the importance of predicting, identifying, and tracking mutations throughout a pandemic event. As the COVID-19 global pandemic surpassed one year, several variants had emerged resulting in increased severity and transmissibility. Here, we used PCR as a surrogate for viral load and consequent severity to evaluate the real-world capabilities of a genome-based clinical severity predictive algorithm. Using a previously published algorithm, we compared the viral genome-based severity predictions to clinically derived PCR-based viral load of 716 viral genomes. For those samples predicted to be \\\"severe\\\" (probability of severe illness >0.5), we observed an average cycle threshold (Ct) of 18.3, whereas those in in the \\\"mild\\\" category (severity probability <0.5) had an average Ct of 20.4 (<i>P</i>=0.0017). We also found a nontrivial correlation between predicted severity probability and cycle threshold (<i>r</i> = -0.199). Finally, when divided into severity probability quartiles, the group most likely to experience severe illness (≥75% probability) had a Ct of 16.6 (<i>n</i> = 10), whereas the group least likely to experience severe illness (<25% probability) had a Ct of 21.4 (<i>n</i> = 350) (<i>P</i>=0.0045). Taken together, our results suggest that the severity predicted by a genome-based algorithm can be related to clinical diagnostic tests and that relative severity may be inferred from diagnostic values.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9173902/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/6499217\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/6499217","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
SARS-CoV-2 Genome-Based Severity Predictions Correspond to Lower qPCR Values and Higher Viral Load.
The 2019 coronavirus disease (COVID-19) pandemic has demonstrated the importance of predicting, identifying, and tracking mutations throughout a pandemic event. As the COVID-19 global pandemic surpassed one year, several variants had emerged resulting in increased severity and transmissibility. Here, we used PCR as a surrogate for viral load and consequent severity to evaluate the real-world capabilities of a genome-based clinical severity predictive algorithm. Using a previously published algorithm, we compared the viral genome-based severity predictions to clinically derived PCR-based viral load of 716 viral genomes. For those samples predicted to be "severe" (probability of severe illness >0.5), we observed an average cycle threshold (Ct) of 18.3, whereas those in in the "mild" category (severity probability <0.5) had an average Ct of 20.4 (P=0.0017). We also found a nontrivial correlation between predicted severity probability and cycle threshold (r = -0.199). Finally, when divided into severity probability quartiles, the group most likely to experience severe illness (≥75% probability) had a Ct of 16.6 (n = 10), whereas the group least likely to experience severe illness (<25% probability) had a Ct of 21.4 (n = 350) (P=0.0045). Taken together, our results suggest that the severity predicted by a genome-based algorithm can be related to clinical diagnostic tests and that relative severity may be inferred from diagnostic values.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.