直接键合铜(DBC)平台内集成三维流形微通道冷却的点接触键合

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Yujui Lin, Tiwei Wei, Wyatt Jason Moy, Hao Chen, M. Gupta, M. Degner, M. Asheghi, A. Mantooth, K. Goodson
{"title":"直接键合铜(DBC)平台内集成三维流形微通道冷却的点接触键合","authors":"Yujui Lin, Tiwei Wei, Wyatt Jason Moy, Hao Chen, M. Gupta, M. Degner, M. Asheghi, A. Mantooth, K. Goodson","doi":"10.1115/1.4062924","DOIUrl":null,"url":null,"abstract":"\n A microchannel heat sink integrated with a three-dimensional manifold using Direct Bonded Copper (DBC) is promising for high power density electronics due to the combination of low thermal resistance and reduced pressure drop. However, this requires much progress on the fabrication and high-quality point-contact bonding processes of the microchannel substrate and 3D manifold DBCs. In this study, we have developed processing techniques for surface preparations and high-quality point-contact solder bonding between the two DBC substrates. We utilized chemical polishing followed by electroless plating to prevent excess solder from blocking the microchannels. We performed a parametric study to investigate the impact of bonding time and surface roughness on the tensile strength of the bonding interface. The bonding strength increased from 1.8 MPa to 2.3 MPa as the bonding time increased from 10 to 30 minutes while reducing the surface roughness from Rz = 0.21 to 0.05 µm, resulting in increasing the bonding strength from 0.16 MPa to 2.07 MPa. We successfully tested the microcooler up to the inlet pressure of 70 kPa and pressure drop of 30 kPa, which translates to the tensile strength at the bonding point contacts, which remains well below the 2.30 MPa. We achieved the junction-to-coolant thermal resistance of 0.2 cm2-K/W at chip heat flux of 590 W/cm2. Thus, our study provides an important proof-of-concept demonstration towards enabling high power density modules for power conversion applications.","PeriodicalId":15663,"journal":{"name":"Journal of Electronic Packaging","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Point-Contact Bonding of Integrated 3D Manifold Microchannel Cooling within Direct Bonded Copper (DBC) Platform\",\"authors\":\"Yujui Lin, Tiwei Wei, Wyatt Jason Moy, Hao Chen, M. Gupta, M. Degner, M. Asheghi, A. Mantooth, K. Goodson\",\"doi\":\"10.1115/1.4062924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A microchannel heat sink integrated with a three-dimensional manifold using Direct Bonded Copper (DBC) is promising for high power density electronics due to the combination of low thermal resistance and reduced pressure drop. However, this requires much progress on the fabrication and high-quality point-contact bonding processes of the microchannel substrate and 3D manifold DBCs. In this study, we have developed processing techniques for surface preparations and high-quality point-contact solder bonding between the two DBC substrates. We utilized chemical polishing followed by electroless plating to prevent excess solder from blocking the microchannels. We performed a parametric study to investigate the impact of bonding time and surface roughness on the tensile strength of the bonding interface. The bonding strength increased from 1.8 MPa to 2.3 MPa as the bonding time increased from 10 to 30 minutes while reducing the surface roughness from Rz = 0.21 to 0.05 µm, resulting in increasing the bonding strength from 0.16 MPa to 2.07 MPa. We successfully tested the microcooler up to the inlet pressure of 70 kPa and pressure drop of 30 kPa, which translates to the tensile strength at the bonding point contacts, which remains well below the 2.30 MPa. We achieved the junction-to-coolant thermal resistance of 0.2 cm2-K/W at chip heat flux of 590 W/cm2. Thus, our study provides an important proof-of-concept demonstration towards enabling high power density modules for power conversion applications.\",\"PeriodicalId\":15663,\"journal\":{\"name\":\"Journal of Electronic Packaging\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Packaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062924\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Packaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062924","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

使用直接键合铜(DBC)与三维歧管集成的微通道散热器具有低热阻和降低压降的优点,有望用于高功率密度电子产品。然而,这需要在微通道基板和3D歧管DBC的制造和高质量点接触接合工艺方面取得很大进展。在这项研究中,我们开发了两种DBC基板之间的表面处理和高质量点接触焊料接合的加工技术。我们采用化学抛光,然后进行化学镀,以防止过多的焊料堵塞微通道。我们进行了一项参数研究,以研究结合时间和表面粗糙度对结合界面抗拉强度的影响。随着结合时间从10分钟增加到30分钟,结合强度从1.8 MPa增加到2.3 MPa,同时将表面粗糙度从Rz=0.21µm降低到0.05µm,从而使结合强度从0.16 MPa增加到2.07 MPa。我们成功地测试了微冷却器,使其入口压力达到70 kPa,压降达到30 kPa,这意味着结合点接触处的拉伸强度仍远低于2.30 MPa。在芯片热通量为590 W/cm2时,我们实现了0.2 cm2-K/W的结-冷却剂热阻。因此,我们的研究为实现功率转换应用的高功率密度模块提供了一个重要的概念验证演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Point-Contact Bonding of Integrated 3D Manifold Microchannel Cooling within Direct Bonded Copper (DBC) Platform
A microchannel heat sink integrated with a three-dimensional manifold using Direct Bonded Copper (DBC) is promising for high power density electronics due to the combination of low thermal resistance and reduced pressure drop. However, this requires much progress on the fabrication and high-quality point-contact bonding processes of the microchannel substrate and 3D manifold DBCs. In this study, we have developed processing techniques for surface preparations and high-quality point-contact solder bonding between the two DBC substrates. We utilized chemical polishing followed by electroless plating to prevent excess solder from blocking the microchannels. We performed a parametric study to investigate the impact of bonding time and surface roughness on the tensile strength of the bonding interface. The bonding strength increased from 1.8 MPa to 2.3 MPa as the bonding time increased from 10 to 30 minutes while reducing the surface roughness from Rz = 0.21 to 0.05 µm, resulting in increasing the bonding strength from 0.16 MPa to 2.07 MPa. We successfully tested the microcooler up to the inlet pressure of 70 kPa and pressure drop of 30 kPa, which translates to the tensile strength at the bonding point contacts, which remains well below the 2.30 MPa. We achieved the junction-to-coolant thermal resistance of 0.2 cm2-K/W at chip heat flux of 590 W/cm2. Thus, our study provides an important proof-of-concept demonstration towards enabling high power density modules for power conversion applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electronic Packaging
Journal of Electronic Packaging 工程技术-工程:电子与电气
CiteScore
4.90
自引率
6.20%
发文量
44
审稿时长
3 months
期刊介绍: The Journal of Electronic Packaging publishes papers that use experimental and theoretical (analytical and computer-aided) methods, approaches, and techniques to address and solve various mechanical, materials, and reliability problems encountered in the analysis, design, manufacturing, testing, and operation of electronic and photonics components, devices, and systems. Scope: Microsystems packaging; Systems integration; Flexible electronics; Materials with nano structures and in general small scale systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信