T. Mai, Yuki Ishiwata‐Kimata, Q. Le, Hiroyuki Kido, Y. Kimata
{"title":"酵母细胞中4-苯基丁酸对内质网相关室的分散作用。","authors":"T. Mai, Yuki Ishiwata‐Kimata, Q. Le, Hiroyuki Kido, Y. Kimata","doi":"10.1247/csf.19023","DOIUrl":null,"url":null,"abstract":"In yeast Saccharomyces cerevisiae cells, some aberrant multimembrane-spanning proteins are not transported to the cell surface but form and are accumulated in endoplasmic reticulum (ER)-derived subcompartments, known as the ER-associated compartments (ERACs), which are observed as puncta under fluorescence microscopy. Here we show that a mutant of the cell surface protein Pma1, Pma1-2308, was accumulated in the ERACs, as well as the heterologously expressed mammalian cystic fibrosis transmembrane conductance regulator (CFTR), in yeast cells. Pma1-2308 and CFTR were located on the same ERACs. We also note that treatment of cells with 4-phenyl butyric acid (4-PBA) compromised the ERAC formation by Pma1-2308 and CFTR, suggesting that 4-PBA exerts a chaperone-like function in yeast cells. Intriguingly, unlike ER stress induced by the canonical ER stressor tunicamycin, ER stress that was induced by Pma1-2308 was aggravated by 4-PBA. We assume that this observation demonstrates a beneficial aspect of ERACs, and thus propose that the ERACs are formed through aggregation of aberrant transmembrane proteins and work as the accumulation sites of multiple ERAC-forming proteins for their sequestration. Key words: protein aggregation, organelle, unfolded protein response, ER stress, 4-PBA.","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":"1 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1247/csf.19023","citationCount":"3","resultStr":"{\"title\":\"Dispersion of endoplasmic reticulum-associated compartments by 4-phenyl butyric acid in yeast cells.\",\"authors\":\"T. Mai, Yuki Ishiwata‐Kimata, Q. Le, Hiroyuki Kido, Y. Kimata\",\"doi\":\"10.1247/csf.19023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In yeast Saccharomyces cerevisiae cells, some aberrant multimembrane-spanning proteins are not transported to the cell surface but form and are accumulated in endoplasmic reticulum (ER)-derived subcompartments, known as the ER-associated compartments (ERACs), which are observed as puncta under fluorescence microscopy. Here we show that a mutant of the cell surface protein Pma1, Pma1-2308, was accumulated in the ERACs, as well as the heterologously expressed mammalian cystic fibrosis transmembrane conductance regulator (CFTR), in yeast cells. Pma1-2308 and CFTR were located on the same ERACs. We also note that treatment of cells with 4-phenyl butyric acid (4-PBA) compromised the ERAC formation by Pma1-2308 and CFTR, suggesting that 4-PBA exerts a chaperone-like function in yeast cells. Intriguingly, unlike ER stress induced by the canonical ER stressor tunicamycin, ER stress that was induced by Pma1-2308 was aggravated by 4-PBA. We assume that this observation demonstrates a beneficial aspect of ERACs, and thus propose that the ERACs are formed through aggregation of aberrant transmembrane proteins and work as the accumulation sites of multiple ERAC-forming proteins for their sequestration. Key words: protein aggregation, organelle, unfolded protein response, ER stress, 4-PBA.\",\"PeriodicalId\":9927,\"journal\":{\"name\":\"Cell structure and function\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2019-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1247/csf.19023\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell structure and function\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1247/csf.19023\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell structure and function","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1247/csf.19023","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Dispersion of endoplasmic reticulum-associated compartments by 4-phenyl butyric acid in yeast cells.
In yeast Saccharomyces cerevisiae cells, some aberrant multimembrane-spanning proteins are not transported to the cell surface but form and are accumulated in endoplasmic reticulum (ER)-derived subcompartments, known as the ER-associated compartments (ERACs), which are observed as puncta under fluorescence microscopy. Here we show that a mutant of the cell surface protein Pma1, Pma1-2308, was accumulated in the ERACs, as well as the heterologously expressed mammalian cystic fibrosis transmembrane conductance regulator (CFTR), in yeast cells. Pma1-2308 and CFTR were located on the same ERACs. We also note that treatment of cells with 4-phenyl butyric acid (4-PBA) compromised the ERAC formation by Pma1-2308 and CFTR, suggesting that 4-PBA exerts a chaperone-like function in yeast cells. Intriguingly, unlike ER stress induced by the canonical ER stressor tunicamycin, ER stress that was induced by Pma1-2308 was aggravated by 4-PBA. We assume that this observation demonstrates a beneficial aspect of ERACs, and thus propose that the ERACs are formed through aggregation of aberrant transmembrane proteins and work as the accumulation sites of multiple ERAC-forming proteins for their sequestration. Key words: protein aggregation, organelle, unfolded protein response, ER stress, 4-PBA.
期刊介绍:
Cell Structure and Function is a fully peer-reviewed, fully Open Access journal. As the official English-language journal of the Japan Society for Cell Biology, it is published continuously online and biannually in print.
Cell Structure and Function publishes important, original contributions in all areas of molecular and cell biology. The journal welcomes the submission of manuscripts on research areas such as the cell nucleus, chromosomes, and gene expression; the cytoskeleton and cell motility; cell adhesion and the extracellular matrix; cell growth, differentiation and death; signal transduction; the protein life cycle; membrane traffic; and organelles.