{"title":"果糖脱水法制备5-羟甲基糠醛的新型固体酸催化剂。","authors":"Sile Liu, Dong-hu Shang, Hailong Wang, Jing Wu","doi":"10.3233/bme-211385","DOIUrl":null,"url":null,"abstract":"BACKGROUND\n5-Hydroxymethylfurfural (5-HMF) is a high value-added platform compound which can be obtained by dehydration of hexose under acidic conditions.\n\n\nOBJECTIVE\nIn this paper, a novel impregnation strategy for the molecular sieves (ZSM-5) as carrier and phosphotungstic acid (TPA) as active ingredient is proposed, the influence of the fructose dehydration process were studied and eco-friendliness, low-cost 5-hydroxymethylfurfural (5-HMF) was successfully obtained.\n\n\nMETHOD\nThe structure surface area, pore size, acidity and microstructure of solid acid catalysts were investigated by XRD, BET, NH3-TPD and SEM. The influences of reaction temperature, reaction time, catalyst dosage on the yield of 5-hydroxymethylfurfural (5-HFM) were investigated.\n\n\nRESULTS\nThe results showed that TPA/ZSM-5 (mass ratio 20:10) has good dispersion and catalytic activity, fructose dosage 5 g, reaction temperature 140 °C, reaction time 2 h, catalyst dosage 0.5 g, and the yield of 5-hydroxymethylfurfural was 80.75% and after five times use the yield of 5-HMF remained above 75%.\n\n\nCONCLUSION","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel solid acid catalyst for the production of 5-hydroxymethylfurfural with fructose dehydration.\",\"authors\":\"Sile Liu, Dong-hu Shang, Hailong Wang, Jing Wu\",\"doi\":\"10.3233/bme-211385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND\\n5-Hydroxymethylfurfural (5-HMF) is a high value-added platform compound which can be obtained by dehydration of hexose under acidic conditions.\\n\\n\\nOBJECTIVE\\nIn this paper, a novel impregnation strategy for the molecular sieves (ZSM-5) as carrier and phosphotungstic acid (TPA) as active ingredient is proposed, the influence of the fructose dehydration process were studied and eco-friendliness, low-cost 5-hydroxymethylfurfural (5-HMF) was successfully obtained.\\n\\n\\nMETHOD\\nThe structure surface area, pore size, acidity and microstructure of solid acid catalysts were investigated by XRD, BET, NH3-TPD and SEM. The influences of reaction temperature, reaction time, catalyst dosage on the yield of 5-hydroxymethylfurfural (5-HFM) were investigated.\\n\\n\\nRESULTS\\nThe results showed that TPA/ZSM-5 (mass ratio 20:10) has good dispersion and catalytic activity, fructose dosage 5 g, reaction temperature 140 °C, reaction time 2 h, catalyst dosage 0.5 g, and the yield of 5-hydroxymethylfurfural was 80.75% and after five times use the yield of 5-HMF remained above 75%.\\n\\n\\nCONCLUSION\",\"PeriodicalId\":9109,\"journal\":{\"name\":\"Bio-medical materials and engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bio-medical materials and engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/bme-211385\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-medical materials and engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/bme-211385","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Novel solid acid catalyst for the production of 5-hydroxymethylfurfural with fructose dehydration.
BACKGROUND
5-Hydroxymethylfurfural (5-HMF) is a high value-added platform compound which can be obtained by dehydration of hexose under acidic conditions.
OBJECTIVE
In this paper, a novel impregnation strategy for the molecular sieves (ZSM-5) as carrier and phosphotungstic acid (TPA) as active ingredient is proposed, the influence of the fructose dehydration process were studied and eco-friendliness, low-cost 5-hydroxymethylfurfural (5-HMF) was successfully obtained.
METHOD
The structure surface area, pore size, acidity and microstructure of solid acid catalysts were investigated by XRD, BET, NH3-TPD and SEM. The influences of reaction temperature, reaction time, catalyst dosage on the yield of 5-hydroxymethylfurfural (5-HFM) were investigated.
RESULTS
The results showed that TPA/ZSM-5 (mass ratio 20:10) has good dispersion and catalytic activity, fructose dosage 5 g, reaction temperature 140 °C, reaction time 2 h, catalyst dosage 0.5 g, and the yield of 5-hydroxymethylfurfural was 80.75% and after five times use the yield of 5-HMF remained above 75%.
CONCLUSION
期刊介绍:
The aim of Bio-Medical Materials and Engineering is to promote the welfare of humans and to help them keep healthy. This international journal is an interdisciplinary journal that publishes original research papers, review articles and brief notes on materials and engineering for biological and medical systems. Articles in this peer-reviewed journal cover a wide range of topics, including, but not limited to: Engineering as applied to improving diagnosis, therapy, and prevention of disease and injury, and better substitutes for damaged or disabled human organs; Studies of biomaterial interactions with the human body, bio-compatibility, interfacial and interaction problems; Biomechanical behavior under biological and/or medical conditions; Mechanical and biological properties of membrane biomaterials; Cellular and tissue engineering, physiological, biophysical, biochemical bioengineering aspects; Implant failure fields and degradation of implants. Biomimetics engineering and materials including system analysis as supporter for aged people and as rehabilitation; Bioengineering and materials technology as applied to the decontamination against environmental problems; Biosensors, bioreactors, bioprocess instrumentation and control system; Application to food engineering; Standardization problems on biomaterials and related products; Assessment of reliability and safety of biomedical materials and man-machine systems; and Product liability of biomaterials and related products.