{"title":"基于自适应H∞培养卡尔曼滤波的低成本集成INS/GNSS","authors":"S. Taghizadeh, R. Safabakhsh","doi":"10.1017/S0373463322000583","DOIUrl":null,"url":null,"abstract":"Abstract We proposed an adaptive H-infinity Cubature Kalman Filter (AH∞CKF) to improve the navigation accuracy of a highly manoeuvrable unmanned aerial vehicle (UAV). AH∞CKF fuses the Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS) measurements. Traditional state estimation filters like extended Kalman filters (EKF) and cubature Kalman filters (CKF) assume Gaussian noises. However, their performance degrades for non-Gaussian noises and system uncertainties encountered in real-world applications. Thus, designing filters robust to noise and distribution is crucial. AH∞CKF combines H∞CKF design with an added adaptive factor to adjust the state estimation covariance matrix according to measurements by exploiting the square root method to yield more numerically stable results (SrAH∞CKF). We conducted multiple dynamically rich flight tests to validate our claims using a UAV equipped with a commercially well-known GNSS solution. Results show that the SrAH∞CKF state estimation outperforms EKF and CKF methods on average by 90% in various statistical measures.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-cost integrated INS/GNSS using adaptive H∞ Cubature Kalman Filter\",\"authors\":\"S. Taghizadeh, R. Safabakhsh\",\"doi\":\"10.1017/S0373463322000583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We proposed an adaptive H-infinity Cubature Kalman Filter (AH∞CKF) to improve the navigation accuracy of a highly manoeuvrable unmanned aerial vehicle (UAV). AH∞CKF fuses the Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS) measurements. Traditional state estimation filters like extended Kalman filters (EKF) and cubature Kalman filters (CKF) assume Gaussian noises. However, their performance degrades for non-Gaussian noises and system uncertainties encountered in real-world applications. Thus, designing filters robust to noise and distribution is crucial. AH∞CKF combines H∞CKF design with an added adaptive factor to adjust the state estimation covariance matrix according to measurements by exploiting the square root method to yield more numerically stable results (SrAH∞CKF). We conducted multiple dynamically rich flight tests to validate our claims using a UAV equipped with a commercially well-known GNSS solution. Results show that the SrAH∞CKF state estimation outperforms EKF and CKF methods on average by 90% in various statistical measures.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/S0373463322000583\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0373463322000583","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Low-cost integrated INS/GNSS using adaptive H∞ Cubature Kalman Filter
Abstract We proposed an adaptive H-infinity Cubature Kalman Filter (AH∞CKF) to improve the navigation accuracy of a highly manoeuvrable unmanned aerial vehicle (UAV). AH∞CKF fuses the Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS) measurements. Traditional state estimation filters like extended Kalman filters (EKF) and cubature Kalman filters (CKF) assume Gaussian noises. However, their performance degrades for non-Gaussian noises and system uncertainties encountered in real-world applications. Thus, designing filters robust to noise and distribution is crucial. AH∞CKF combines H∞CKF design with an added adaptive factor to adjust the state estimation covariance matrix according to measurements by exploiting the square root method to yield more numerically stable results (SrAH∞CKF). We conducted multiple dynamically rich flight tests to validate our claims using a UAV equipped with a commercially well-known GNSS solution. Results show that the SrAH∞CKF state estimation outperforms EKF and CKF methods on average by 90% in various statistical measures.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.