基于自适应H∞培养卡尔曼滤波的低成本集成INS/GNSS

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
S. Taghizadeh, R. Safabakhsh
{"title":"基于自适应H∞培养卡尔曼滤波的低成本集成INS/GNSS","authors":"S. Taghizadeh, R. Safabakhsh","doi":"10.1017/S0373463322000583","DOIUrl":null,"url":null,"abstract":"Abstract We proposed an adaptive H-infinity Cubature Kalman Filter (AH∞CKF) to improve the navigation accuracy of a highly manoeuvrable unmanned aerial vehicle (UAV). AH∞CKF fuses the Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS) measurements. Traditional state estimation filters like extended Kalman filters (EKF) and cubature Kalman filters (CKF) assume Gaussian noises. However, their performance degrades for non-Gaussian noises and system uncertainties encountered in real-world applications. Thus, designing filters robust to noise and distribution is crucial. AH∞CKF combines H∞CKF design with an added adaptive factor to adjust the state estimation covariance matrix according to measurements by exploiting the square root method to yield more numerically stable results (SrAH∞CKF). We conducted multiple dynamically rich flight tests to validate our claims using a UAV equipped with a commercially well-known GNSS solution. Results show that the SrAH∞CKF state estimation outperforms EKF and CKF methods on average by 90% in various statistical measures.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-cost integrated INS/GNSS using adaptive H∞ Cubature Kalman Filter\",\"authors\":\"S. Taghizadeh, R. Safabakhsh\",\"doi\":\"10.1017/S0373463322000583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We proposed an adaptive H-infinity Cubature Kalman Filter (AH∞CKF) to improve the navigation accuracy of a highly manoeuvrable unmanned aerial vehicle (UAV). AH∞CKF fuses the Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS) measurements. Traditional state estimation filters like extended Kalman filters (EKF) and cubature Kalman filters (CKF) assume Gaussian noises. However, their performance degrades for non-Gaussian noises and system uncertainties encountered in real-world applications. Thus, designing filters robust to noise and distribution is crucial. AH∞CKF combines H∞CKF design with an added adaptive factor to adjust the state estimation covariance matrix according to measurements by exploiting the square root method to yield more numerically stable results (SrAH∞CKF). We conducted multiple dynamically rich flight tests to validate our claims using a UAV equipped with a commercially well-known GNSS solution. Results show that the SrAH∞CKF state estimation outperforms EKF and CKF methods on average by 90% in various statistical measures.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/S0373463322000583\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0373463322000583","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要为了提高高机动性无人机的导航精度,我们提出了一种自适应H∞立方卡尔曼滤波器(AH∞CKF)。AH∞CKF融合了惯性导航系统(INS)和全球导航卫星系统(GNSS)的测量。传统的状态估计滤波器,如扩展卡尔曼滤波器(EKF)和容积卡尔曼滤波器(CKF)假设高斯噪声。然而,由于非高斯噪声和现实应用中遇到的系统不确定性,它们的性能会下降。因此,设计对噪声和分布具有鲁棒性的滤波器是至关重要的。AH∞CKF将H∞CKF设计与添加的自适应因子相结合,利用平方根方法根据测量结果调整状态估计协方差矩阵,以获得更稳定的数值结果(SrAH∞CKF)。我们使用配备了商业知名GNSS解决方案的无人机进行了多次动态丰富的飞行测试,以验证我们的说法。结果表明,在各种统计测量中,SrAH∞CKF状态估计的性能平均优于EKF和CKF方法90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-cost integrated INS/GNSS using adaptive H∞ Cubature Kalman Filter
Abstract We proposed an adaptive H-infinity Cubature Kalman Filter (AH∞CKF) to improve the navigation accuracy of a highly manoeuvrable unmanned aerial vehicle (UAV). AH∞CKF fuses the Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS) measurements. Traditional state estimation filters like extended Kalman filters (EKF) and cubature Kalman filters (CKF) assume Gaussian noises. However, their performance degrades for non-Gaussian noises and system uncertainties encountered in real-world applications. Thus, designing filters robust to noise and distribution is crucial. AH∞CKF combines H∞CKF design with an added adaptive factor to adjust the state estimation covariance matrix according to measurements by exploiting the square root method to yield more numerically stable results (SrAH∞CKF). We conducted multiple dynamically rich flight tests to validate our claims using a UAV equipped with a commercially well-known GNSS solution. Results show that the SrAH∞CKF state estimation outperforms EKF and CKF methods on average by 90% in various statistical measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信