一维不连续有限元的超收敛:弱伽辽金法

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
X. Ye, Shangyou Zhang
{"title":"一维不连续有限元的超收敛:弱伽辽金法","authors":"X. Ye, Shangyou Zhang","doi":"10.4208/eajam.030921.141121","DOIUrl":null,"url":null,"abstract":". A simple stabilizer free weak Galerkin (SFWG) finite element method for a one-dimensional second order elliptic problem is introduced. In this method, the weak function is formed by a discontinuous k -th order polynomial with additional unknowns defined on vertex points, whereas its weak derivative is approximated by a polynomial of degree k + 1. The superconvergence of order two for the SFWG finite element solution is established. It is shown that the elementwise lifted P k + 2 solution of the P k SFWG one converges at the optimal order. Numerical results confirm the theory.","PeriodicalId":48932,"journal":{"name":"East Asian Journal on Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Achieving Superconvergence by One-Dimensional Discontinuous Finite Elements: Weak Galerkin Method\",\"authors\":\"X. Ye, Shangyou Zhang\",\"doi\":\"10.4208/eajam.030921.141121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". A simple stabilizer free weak Galerkin (SFWG) finite element method for a one-dimensional second order elliptic problem is introduced. In this method, the weak function is formed by a discontinuous k -th order polynomial with additional unknowns defined on vertex points, whereas its weak derivative is approximated by a polynomial of degree k + 1. The superconvergence of order two for the SFWG finite element solution is established. It is shown that the elementwise lifted P k + 2 solution of the P k SFWG one converges at the optimal order. Numerical results confirm the theory.\",\"PeriodicalId\":48932,\"journal\":{\"name\":\"East Asian Journal on Applied Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"East Asian Journal on Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/eajam.030921.141121\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"East Asian Journal on Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/eajam.030921.141121","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4

摘要

.介绍了一种求解一维二阶椭圆问题的简单无稳定器弱Galerkin(SFWG)有限元方法。在这种方法中,弱函数由一个不连续的k阶多项式形成,该多项式在顶点上定义了额外的未知数,而其弱导数由k+1次多项式近似。建立了SFWG有限元解的二阶超收敛性。结果表明,Pk-SFWG方程的单元提升Pk+2解收敛于最优阶。数值结果证实了这一理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Achieving Superconvergence by One-Dimensional Discontinuous Finite Elements: Weak Galerkin Method
. A simple stabilizer free weak Galerkin (SFWG) finite element method for a one-dimensional second order elliptic problem is introduced. In this method, the weak function is formed by a discontinuous k -th order polynomial with additional unknowns defined on vertex points, whereas its weak derivative is approximated by a polynomial of degree k + 1. The superconvergence of order two for the SFWG finite element solution is established. It is shown that the elementwise lifted P k + 2 solution of the P k SFWG one converges at the optimal order. Numerical results confirm the theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
8.30%
发文量
48
期刊介绍: The East Asian Journal on Applied Mathematics (EAJAM) aims at promoting study and research in Applied Mathematics in East Asia. It is the editorial policy of EAJAM to accept refereed papers in all active areas of Applied Mathematics and related Mathematical Sciences. Novel applications of Mathematics in real situations are especially welcome. Substantial survey papers on topics of exceptional interest will also be published occasionally.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信