对流-扩散和对流-色散方程的显式-隐式-零时间推进谱配置方案的稳定性

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
M. Tan, Juan Cheng, Chi-Wang Shu
{"title":"对流-扩散和对流-色散方程的显式-隐式-零时间推进谱配置方案的稳定性","authors":"M. Tan, Juan Cheng, Chi-Wang Shu","doi":"10.4208/eajam.2022-271.090123","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss the Fourier collocation and Chebyshev collocation schemes coupled with two specific high order explicit-implicit-null (EIN) time-marching methods for solving the convection-diffusion and convection-dispersion equations. The basic idea of the EIN method discussed in this paper is to add and subtract an appropriate large linear highest derivative term on one side of the considered equation, and then apply the implicit-explicit time-marching method to the equivalent equation. The EIN method so designed does not need any nonlinear iterative solver, and the severe time step restriction for explicit methods can be removed. We give stability analysis for the proposed EIN Fourier collocation schemes on simplified linear equations by the aid of the Fourier method. We show rigorously that the resulting schemes are stable with particular emphasis on the use of large time steps if appropriate stabilization parameters are chosen. Even though the analysis is only performed on the EIN Fourier collocation schemes, numerical results show that the stability criteria can also be extended to the EIN Chebyshev collocation schemes. Numerical experiments are given to demonstrate the stability, accuracy and performance of the EIN schemes for both one-dimensional and two-dimensional linear and nonlinear equations.","PeriodicalId":48932,"journal":{"name":"East Asian Journal on Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of Spectral Collocation Schemes with Explicit-Implicit-Null Time-Marching for Convection-Diffusion and Convection-Dispersion Equations\",\"authors\":\"M. Tan, Juan Cheng, Chi-Wang Shu\",\"doi\":\"10.4208/eajam.2022-271.090123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we discuss the Fourier collocation and Chebyshev collocation schemes coupled with two specific high order explicit-implicit-null (EIN) time-marching methods for solving the convection-diffusion and convection-dispersion equations. The basic idea of the EIN method discussed in this paper is to add and subtract an appropriate large linear highest derivative term on one side of the considered equation, and then apply the implicit-explicit time-marching method to the equivalent equation. The EIN method so designed does not need any nonlinear iterative solver, and the severe time step restriction for explicit methods can be removed. We give stability analysis for the proposed EIN Fourier collocation schemes on simplified linear equations by the aid of the Fourier method. We show rigorously that the resulting schemes are stable with particular emphasis on the use of large time steps if appropriate stabilization parameters are chosen. Even though the analysis is only performed on the EIN Fourier collocation schemes, numerical results show that the stability criteria can also be extended to the EIN Chebyshev collocation schemes. Numerical experiments are given to demonstrate the stability, accuracy and performance of the EIN schemes for both one-dimensional and two-dimensional linear and nonlinear equations.\",\"PeriodicalId\":48932,\"journal\":{\"name\":\"East Asian Journal on Applied Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"East Asian Journal on Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/eajam.2022-271.090123\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"East Asian Journal on Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/eajam.2022-271.090123","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了傅里叶配置和切比雪夫配置格式与两种特定的高阶显式-隐式-零(EIN)时间推进方法的耦合,用于求解对流-扩散和对流-色散方程。本文讨论的EIN方法的基本思想是在考虑的方程的一侧加减一个适当的大线性最高导数项,然后对等效方程应用隐式-显式时间推进法。该方法不需要任何非线性迭代求解器,消除了显式方法严重的时间步长限制。利用傅里叶方法对所提出的简化线性方程的EIN傅里叶配置格式进行了稳定性分析。我们严格地证明了所得到的方案是稳定的,特别强调如果选择适当的稳定参数,则使用大时间步长。虽然只对EIN的傅里叶配置格式进行了分析,但数值结果表明,稳定性判据也可以推广到EIN的切比雪夫配置格式。通过数值实验验证了EIN格式对一维和二维线性和非线性方程的稳定性、精度和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability of Spectral Collocation Schemes with Explicit-Implicit-Null Time-Marching for Convection-Diffusion and Convection-Dispersion Equations
In this paper, we discuss the Fourier collocation and Chebyshev collocation schemes coupled with two specific high order explicit-implicit-null (EIN) time-marching methods for solving the convection-diffusion and convection-dispersion equations. The basic idea of the EIN method discussed in this paper is to add and subtract an appropriate large linear highest derivative term on one side of the considered equation, and then apply the implicit-explicit time-marching method to the equivalent equation. The EIN method so designed does not need any nonlinear iterative solver, and the severe time step restriction for explicit methods can be removed. We give stability analysis for the proposed EIN Fourier collocation schemes on simplified linear equations by the aid of the Fourier method. We show rigorously that the resulting schemes are stable with particular emphasis on the use of large time steps if appropriate stabilization parameters are chosen. Even though the analysis is only performed on the EIN Fourier collocation schemes, numerical results show that the stability criteria can also be extended to the EIN Chebyshev collocation schemes. Numerical experiments are given to demonstrate the stability, accuracy and performance of the EIN schemes for both one-dimensional and two-dimensional linear and nonlinear equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
8.30%
发文量
48
期刊介绍: The East Asian Journal on Applied Mathematics (EAJAM) aims at promoting study and research in Applied Mathematics in East Asia. It is the editorial policy of EAJAM to accept refereed papers in all active areas of Applied Mathematics and related Mathematical Sciences. Novel applications of Mathematics in real situations are especially welcome. Substantial survey papers on topics of exceptional interest will also be published occasionally.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信