利用多层次模型检测面试官欺诈

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lukas Olbrich, Yuliya Kosyakova, J. Sakshaug, Silvia Schwanhäuser
{"title":"利用多层次模型检测面试官欺诈","authors":"Lukas Olbrich, Yuliya Kosyakova, J. Sakshaug, Silvia Schwanhäuser","doi":"10.1093/jssam/smac036","DOIUrl":null,"url":null,"abstract":"\n Interviewer falsification, such as the complete or partial fabrication of interview data, has been shown to substantially affect the results of survey data. In this study, we apply a method to identify falsifying face-to-face interviewers based on the development of their behavior over the survey field period. We postulate four potential falsifier types: steady low-effort falsifiers, steady high-effort falsifiers, learning falsifiers, and sudden falsifiers. Using large-scale survey data from Germany with verified falsifications, we apply multilevel models with interviewer effects on the intercept, scale, and slope of the interview sequence to test whether falsifiers can be detected based on their dynamic behavior. In addition to identifying a rather high-effort falsifier previously detected by the survey organization, the model flagged two additional suspicious interviewers exhibiting learning behavior, who were subsequently classified as deviant by the survey organization. We additionally apply the analysis approach to publicly available cross-national survey data and find multiple interviewers who show behavior consistent with the postulated falsifier types.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting Interviewer Fraud Using Multilevel Models\",\"authors\":\"Lukas Olbrich, Yuliya Kosyakova, J. Sakshaug, Silvia Schwanhäuser\",\"doi\":\"10.1093/jssam/smac036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Interviewer falsification, such as the complete or partial fabrication of interview data, has been shown to substantially affect the results of survey data. In this study, we apply a method to identify falsifying face-to-face interviewers based on the development of their behavior over the survey field period. We postulate four potential falsifier types: steady low-effort falsifiers, steady high-effort falsifiers, learning falsifiers, and sudden falsifiers. Using large-scale survey data from Germany with verified falsifications, we apply multilevel models with interviewer effects on the intercept, scale, and slope of the interview sequence to test whether falsifiers can be detected based on their dynamic behavior. In addition to identifying a rather high-effort falsifier previously detected by the survey organization, the model flagged two additional suspicious interviewers exhibiting learning behavior, who were subsequently classified as deviant by the survey organization. We additionally apply the analysis approach to publicly available cross-national survey data and find multiple interviewers who show behavior consistent with the postulated falsifier types.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jssam/smac036\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jssam/smac036","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采访者造假,如完全或部分伪造采访数据,已被证明会对调查数据的结果产生重大影响。在这项研究中,我们应用了一种方法,根据他们在调查期间的行为发展来识别伪造的面对面采访者。我们假设了四种潜在的证伪者类型:稳定的低努力证伪者、稳定的高努力证伪器、学习证伪器和突然证伪器。利用来自德国的大规模调查数据,我们对采访序列的截距、规模和斜率应用了具有采访者效应的多层次模型,以测试是否可以根据造假者的动态行为来检测造假者。除了识别调查组织之前检测到的一个相当努力的造假者外,该模型还标记了另外两名表现出学习行为的可疑受访者,他们随后被调查组织归类为离经叛道者。此外,我们将分析方法应用于公开的跨国调查数据,并发现多名受访者的行为与假设的证伪者类型一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting Interviewer Fraud Using Multilevel Models
Interviewer falsification, such as the complete or partial fabrication of interview data, has been shown to substantially affect the results of survey data. In this study, we apply a method to identify falsifying face-to-face interviewers based on the development of their behavior over the survey field period. We postulate four potential falsifier types: steady low-effort falsifiers, steady high-effort falsifiers, learning falsifiers, and sudden falsifiers. Using large-scale survey data from Germany with verified falsifications, we apply multilevel models with interviewer effects on the intercept, scale, and slope of the interview sequence to test whether falsifiers can be detected based on their dynamic behavior. In addition to identifying a rather high-effort falsifier previously detected by the survey organization, the model flagged two additional suspicious interviewers exhibiting learning behavior, who were subsequently classified as deviant by the survey organization. We additionally apply the analysis approach to publicly available cross-national survey data and find multiple interviewers who show behavior consistent with the postulated falsifier types.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信