Lukas Olbrich, Yuliya Kosyakova, J. Sakshaug, Silvia Schwanhäuser
{"title":"利用多层次模型检测面试官欺诈","authors":"Lukas Olbrich, Yuliya Kosyakova, J. Sakshaug, Silvia Schwanhäuser","doi":"10.1093/jssam/smac036","DOIUrl":null,"url":null,"abstract":"\n Interviewer falsification, such as the complete or partial fabrication of interview data, has been shown to substantially affect the results of survey data. In this study, we apply a method to identify falsifying face-to-face interviewers based on the development of their behavior over the survey field period. We postulate four potential falsifier types: steady low-effort falsifiers, steady high-effort falsifiers, learning falsifiers, and sudden falsifiers. Using large-scale survey data from Germany with verified falsifications, we apply multilevel models with interviewer effects on the intercept, scale, and slope of the interview sequence to test whether falsifiers can be detected based on their dynamic behavior. In addition to identifying a rather high-effort falsifier previously detected by the survey organization, the model flagged two additional suspicious interviewers exhibiting learning behavior, who were subsequently classified as deviant by the survey organization. We additionally apply the analysis approach to publicly available cross-national survey data and find multiple interviewers who show behavior consistent with the postulated falsifier types.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting Interviewer Fraud Using Multilevel Models\",\"authors\":\"Lukas Olbrich, Yuliya Kosyakova, J. Sakshaug, Silvia Schwanhäuser\",\"doi\":\"10.1093/jssam/smac036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Interviewer falsification, such as the complete or partial fabrication of interview data, has been shown to substantially affect the results of survey data. In this study, we apply a method to identify falsifying face-to-face interviewers based on the development of their behavior over the survey field period. We postulate four potential falsifier types: steady low-effort falsifiers, steady high-effort falsifiers, learning falsifiers, and sudden falsifiers. Using large-scale survey data from Germany with verified falsifications, we apply multilevel models with interviewer effects on the intercept, scale, and slope of the interview sequence to test whether falsifiers can be detected based on their dynamic behavior. In addition to identifying a rather high-effort falsifier previously detected by the survey organization, the model flagged two additional suspicious interviewers exhibiting learning behavior, who were subsequently classified as deviant by the survey organization. We additionally apply the analysis approach to publicly available cross-national survey data and find multiple interviewers who show behavior consistent with the postulated falsifier types.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jssam/smac036\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jssam/smac036","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Detecting Interviewer Fraud Using Multilevel Models
Interviewer falsification, such as the complete or partial fabrication of interview data, has been shown to substantially affect the results of survey data. In this study, we apply a method to identify falsifying face-to-face interviewers based on the development of their behavior over the survey field period. We postulate four potential falsifier types: steady low-effort falsifiers, steady high-effort falsifiers, learning falsifiers, and sudden falsifiers. Using large-scale survey data from Germany with verified falsifications, we apply multilevel models with interviewer effects on the intercept, scale, and slope of the interview sequence to test whether falsifiers can be detected based on their dynamic behavior. In addition to identifying a rather high-effort falsifier previously detected by the survey organization, the model flagged two additional suspicious interviewers exhibiting learning behavior, who were subsequently classified as deviant by the survey organization. We additionally apply the analysis approach to publicly available cross-national survey data and find multiple interviewers who show behavior consistent with the postulated falsifier types.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.