David G. Blauvelt, Benjamin W. Chui, Nicholas C. Higgins, Francisco J. Baltazar, Shuvo Roy
{"title":"用于体外生命支持的硅膜:设计和制造方法的比较","authors":"David G. Blauvelt, Benjamin W. Chui, Nicholas C. Higgins, Francisco J. Baltazar, Shuvo Roy","doi":"10.1007/s10544-022-00639-7","DOIUrl":null,"url":null,"abstract":"<div><p>Extracorporeal life support is an advanced therapy that circulates blood through an extracorporeal oxygenator, performing gas exchange outside the body. However, its use is limited by severe complications, including bleeding, clotting, and hemolysis. Semiconductor silicon-based membranes have emerged as an alternative to traditional hollow-fiber semipermeable membranes. These membranes offer excellent gas exchange efficiency and the potential to increase hemocompatibility by improving flow dynamics. In this work, we evaluate two next-generation silicon membrane designs, which are intended to be mechanically robust and efficient in gas exchange, while simultaneously reducing fabrication complexity. The “window” design features 10 µm pores on one side and large windows on the back side. The “cavern” design also uses 10 µm pores but contains a network of interconnected buried caverns to distribute the sweep gas from smaller inlet holes. Both designs were shown to be technically viable and able to be reproducibly fabricated. In addition, they both were mechanically robust and withstood 30 psi of transmembrane pressure without breakage or bubbling. At low sweep gas pressures, gas transfer efficiency was similar, with the partial pressure of oxygen in water increasing by 10.7 ± 2.3 mmHg (mean ± standard deviation) and 13.6 ± 1.9 mmHg for the window and cavern membranes, respectively. Gas transfer efficiency was also similar at higher pressures. At 10 psi, oxygen tension increased by 16.8 ± 5.7 mmHg (window) and 18.9 ± 1.3 mmHg (cavern). We conclude that silicon membranes featuring a 10 µm pore size can simplify the fabrication process and improve mechanical robustness while maintaining excellent efficiency.</p><h3>Graphical Abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"25 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silicon membranes for extracorporeal life support: a comparison of design and fabrication methodologies\",\"authors\":\"David G. Blauvelt, Benjamin W. Chui, Nicholas C. Higgins, Francisco J. Baltazar, Shuvo Roy\",\"doi\":\"10.1007/s10544-022-00639-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Extracorporeal life support is an advanced therapy that circulates blood through an extracorporeal oxygenator, performing gas exchange outside the body. However, its use is limited by severe complications, including bleeding, clotting, and hemolysis. Semiconductor silicon-based membranes have emerged as an alternative to traditional hollow-fiber semipermeable membranes. These membranes offer excellent gas exchange efficiency and the potential to increase hemocompatibility by improving flow dynamics. In this work, we evaluate two next-generation silicon membrane designs, which are intended to be mechanically robust and efficient in gas exchange, while simultaneously reducing fabrication complexity. The “window” design features 10 µm pores on one side and large windows on the back side. The “cavern” design also uses 10 µm pores but contains a network of interconnected buried caverns to distribute the sweep gas from smaller inlet holes. Both designs were shown to be technically viable and able to be reproducibly fabricated. In addition, they both were mechanically robust and withstood 30 psi of transmembrane pressure without breakage or bubbling. At low sweep gas pressures, gas transfer efficiency was similar, with the partial pressure of oxygen in water increasing by 10.7 ± 2.3 mmHg (mean ± standard deviation) and 13.6 ± 1.9 mmHg for the window and cavern membranes, respectively. Gas transfer efficiency was also similar at higher pressures. At 10 psi, oxygen tension increased by 16.8 ± 5.7 mmHg (window) and 18.9 ± 1.3 mmHg (cavern). We conclude that silicon membranes featuring a 10 µm pore size can simplify the fabrication process and improve mechanical robustness while maintaining excellent efficiency.</p><h3>Graphical Abstract</h3>\\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\\n </div>\",\"PeriodicalId\":490,\"journal\":{\"name\":\"Biomedical Microdevices\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Microdevices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10544-022-00639-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-022-00639-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Silicon membranes for extracorporeal life support: a comparison of design and fabrication methodologies
Extracorporeal life support is an advanced therapy that circulates blood through an extracorporeal oxygenator, performing gas exchange outside the body. However, its use is limited by severe complications, including bleeding, clotting, and hemolysis. Semiconductor silicon-based membranes have emerged as an alternative to traditional hollow-fiber semipermeable membranes. These membranes offer excellent gas exchange efficiency and the potential to increase hemocompatibility by improving flow dynamics. In this work, we evaluate two next-generation silicon membrane designs, which are intended to be mechanically robust and efficient in gas exchange, while simultaneously reducing fabrication complexity. The “window” design features 10 µm pores on one side and large windows on the back side. The “cavern” design also uses 10 µm pores but contains a network of interconnected buried caverns to distribute the sweep gas from smaller inlet holes. Both designs were shown to be technically viable and able to be reproducibly fabricated. In addition, they both were mechanically robust and withstood 30 psi of transmembrane pressure without breakage or bubbling. At low sweep gas pressures, gas transfer efficiency was similar, with the partial pressure of oxygen in water increasing by 10.7 ± 2.3 mmHg (mean ± standard deviation) and 13.6 ± 1.9 mmHg for the window and cavern membranes, respectively. Gas transfer efficiency was also similar at higher pressures. At 10 psi, oxygen tension increased by 16.8 ± 5.7 mmHg (window) and 18.9 ± 1.3 mmHg (cavern). We conclude that silicon membranes featuring a 10 µm pore size can simplify the fabrication process and improve mechanical robustness while maintaining excellent efficiency.
期刊介绍:
Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology.
General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules.
Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.