{"title":"关于奇辛形式的局部收缩不等式","authors":"G. Benedetti, Jungsoo Kang","doi":"10.4171/pm/2039","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to formulate a local systolic inequality for odd-symplectic forms (also known as Hamiltonian structures) and to establish it in some basic cases. Let $\\Omega$ be an odd-symplectic form on an oriented closed manifold $\\Sigma$ of odd dimension. We say that $\\Omega$ is Zoll if the trajectories of the flow given by $\\Omega$ are the orbits of a free $S^1$-action. After defining the volume of $\\Omega$ and the action of its periodic orbits, we prove that the volume and the action satisfy a polynomial equation, provided $\\Omega$ is Zoll. This builds the equality case of a conjectural systolic inequality for odd-symplectic forms close to a Zoll one. We prove the conjecture when the $S^1$-action yields a flat $S^1$-bundle or $\\Omega$ is quasi-autonomous. In particular the conjecture is established in dimension three. This new inequality recovers the contact systolic inequality as well as the inequality between the minimal action and the Calabi invariant for Hamiltonian isotopies $C^1$-close to the identity on a closed symplectic manifold. Applications to the study of periodic magnetic geodesics on closed orientable surfaces is given in the companion paper available at arXiv:1902.01262.","PeriodicalId":51269,"journal":{"name":"Portugaliae Mathematica","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On a local systolic inequality for odd-symplectic forms\",\"authors\":\"G. Benedetti, Jungsoo Kang\",\"doi\":\"10.4171/pm/2039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to formulate a local systolic inequality for odd-symplectic forms (also known as Hamiltonian structures) and to establish it in some basic cases. Let $\\\\Omega$ be an odd-symplectic form on an oriented closed manifold $\\\\Sigma$ of odd dimension. We say that $\\\\Omega$ is Zoll if the trajectories of the flow given by $\\\\Omega$ are the orbits of a free $S^1$-action. After defining the volume of $\\\\Omega$ and the action of its periodic orbits, we prove that the volume and the action satisfy a polynomial equation, provided $\\\\Omega$ is Zoll. This builds the equality case of a conjectural systolic inequality for odd-symplectic forms close to a Zoll one. We prove the conjecture when the $S^1$-action yields a flat $S^1$-bundle or $\\\\Omega$ is quasi-autonomous. In particular the conjecture is established in dimension three. This new inequality recovers the contact systolic inequality as well as the inequality between the minimal action and the Calabi invariant for Hamiltonian isotopies $C^1$-close to the identity on a closed symplectic manifold. Applications to the study of periodic magnetic geodesics on closed orientable surfaces is given in the companion paper available at arXiv:1902.01262.\",\"PeriodicalId\":51269,\"journal\":{\"name\":\"Portugaliae Mathematica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Portugaliae Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/pm/2039\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Portugaliae Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/pm/2039","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
On a local systolic inequality for odd-symplectic forms
The aim of this paper is to formulate a local systolic inequality for odd-symplectic forms (also known as Hamiltonian structures) and to establish it in some basic cases. Let $\Omega$ be an odd-symplectic form on an oriented closed manifold $\Sigma$ of odd dimension. We say that $\Omega$ is Zoll if the trajectories of the flow given by $\Omega$ are the orbits of a free $S^1$-action. After defining the volume of $\Omega$ and the action of its periodic orbits, we prove that the volume and the action satisfy a polynomial equation, provided $\Omega$ is Zoll. This builds the equality case of a conjectural systolic inequality for odd-symplectic forms close to a Zoll one. We prove the conjecture when the $S^1$-action yields a flat $S^1$-bundle or $\Omega$ is quasi-autonomous. In particular the conjecture is established in dimension three. This new inequality recovers the contact systolic inequality as well as the inequality between the minimal action and the Calabi invariant for Hamiltonian isotopies $C^1$-close to the identity on a closed symplectic manifold. Applications to the study of periodic magnetic geodesics on closed orientable surfaces is given in the companion paper available at arXiv:1902.01262.
期刊介绍:
Since its foundation in 1937, Portugaliae Mathematica has aimed at publishing high-level research articles in all branches of mathematics. With great efforts by its founders, the journal was able to publish articles by some of the best mathematicians of the time. In 2001 a New Series of Portugaliae Mathematica was started, reaffirming the purpose of maintaining a high-level research journal in mathematics with a wide range scope.