等离子体电解氧化用于牙种植体表面处理

IF 1.1 Q4 MEDICINE, RESEARCH & EXPERIMENTAL
Sovremennye Tehnologii v Medicine Pub Date : 2023-01-01 Epub Date: 2023-05-28 DOI:10.17691/stm2023.15.3.02
A A Muraev, A I Murzabekov, S Yu Ivanov, Yu V Tarasov, E A Orlov, A A Dolgalev
{"title":"等离子体电解氧化用于牙种植体表面处理","authors":"A A Muraev, A I Murzabekov, S Yu Ivanov, Yu V Tarasov, E A Orlov, A A Dolgalev","doi":"10.17691/stm2023.15.3.02","DOIUrl":null,"url":null,"abstract":"<p><p>Current technologies of plasma electrolytic oxidation (PEO) for modifying the surfaces of dental implants made of the Grade IV titan alloy provide predictable long-term results in implant dentistry. <b>The aim of the study</b> is to evaluate the efficacy of PEO technology comparing two types of surface modification of dental implants made of VT1-0 medical titanium alloy.</p><p><strong>Materials and methods: </strong>50 IRIS dental implants (Scientific Production Company LICOSTOM, Russia), 10-mm long and 4 mm in diameter, were manufactured from the VT1-0 alloy. The implant surface was treated by two PEO methods: 1) in the aqueous solution of alkaline electrolyte without any additional modifiers (PEO-Ti); 2) in the aqueous solution of orthophosphoric acid-based electrolyte containing calcium carbonate (PEO-Ca). Implants made of VT1-0 alloy after milling and without additional treatment served as control samples. The implant surfaces were studied by electron microscopy and energy dispersive X-ray spectrometry. Some of the implants were installed in sheep, samples were obtained at 2, 4, and 8 weeks and studied by microcomputer tomography.</p><p><strong>Results: </strong>Regardless of the electrolyte composition, a highly developed porous surface was formed in the samples with PEO-modified surfaces. The surface of the PEO-Ti samples in a simple unmodified electrolyte was characterized by a large number of open pores with a wide range of size distribution from 200 nm to 3 μm. The pore size distribution was of a monomodal character, with a maximum near 0.23 μm. The PEO samples in the Ca-containing electrolyte had pores also in a wide range from ~80 nm to ~7 μm. The pore distribution, in contrast to PEO-Ti, was bimodal in nature, with the main maximum in the region of 1.05 μm and the concomitant maximum near 2.45 μm.The obtained surfaces of both types (PEO with Ca and Ti) possessed high purity and optimal microroughness for osseointegration. Both types of PEO treatment (PEO with Ca and Ti) have demonstrated a similar osseointegrative potential, nevertheless, the surface of the PEO-Ca showed a better contact with the implant surface (49.8%) than PEO-Ti (42.4%) obviously due to the presence of calcium in its composition.</p><p><strong>Conclusion: </strong>The PEO-formed implant surfaces demonstrate high osseointegrative properties after any variants of treatment and show the potential for application in osteoporosis.</p>","PeriodicalId":51886,"journal":{"name":"Sovremennye Tehnologii v Medicine","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10904360/pdf/","citationCount":"0","resultStr":"{\"title\":\"Plasma Electrolytic Oxidation for Dental Implant Surface Treatment.\",\"authors\":\"A A Muraev, A I Murzabekov, S Yu Ivanov, Yu V Tarasov, E A Orlov, A A Dolgalev\",\"doi\":\"10.17691/stm2023.15.3.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Current technologies of plasma electrolytic oxidation (PEO) for modifying the surfaces of dental implants made of the Grade IV titan alloy provide predictable long-term results in implant dentistry. <b>The aim of the study</b> is to evaluate the efficacy of PEO technology comparing two types of surface modification of dental implants made of VT1-0 medical titanium alloy.</p><p><strong>Materials and methods: </strong>50 IRIS dental implants (Scientific Production Company LICOSTOM, Russia), 10-mm long and 4 mm in diameter, were manufactured from the VT1-0 alloy. The implant surface was treated by two PEO methods: 1) in the aqueous solution of alkaline electrolyte without any additional modifiers (PEO-Ti); 2) in the aqueous solution of orthophosphoric acid-based electrolyte containing calcium carbonate (PEO-Ca). Implants made of VT1-0 alloy after milling and without additional treatment served as control samples. The implant surfaces were studied by electron microscopy and energy dispersive X-ray spectrometry. Some of the implants were installed in sheep, samples were obtained at 2, 4, and 8 weeks and studied by microcomputer tomography.</p><p><strong>Results: </strong>Regardless of the electrolyte composition, a highly developed porous surface was formed in the samples with PEO-modified surfaces. The surface of the PEO-Ti samples in a simple unmodified electrolyte was characterized by a large number of open pores with a wide range of size distribution from 200 nm to 3 μm. The pore size distribution was of a monomodal character, with a maximum near 0.23 μm. The PEO samples in the Ca-containing electrolyte had pores also in a wide range from ~80 nm to ~7 μm. The pore distribution, in contrast to PEO-Ti, was bimodal in nature, with the main maximum in the region of 1.05 μm and the concomitant maximum near 2.45 μm.The obtained surfaces of both types (PEO with Ca and Ti) possessed high purity and optimal microroughness for osseointegration. Both types of PEO treatment (PEO with Ca and Ti) have demonstrated a similar osseointegrative potential, nevertheless, the surface of the PEO-Ca showed a better contact with the implant surface (49.8%) than PEO-Ti (42.4%) obviously due to the presence of calcium in its composition.</p><p><strong>Conclusion: </strong>The PEO-formed implant surfaces demonstrate high osseointegrative properties after any variants of treatment and show the potential for application in osteoporosis.</p>\",\"PeriodicalId\":51886,\"journal\":{\"name\":\"Sovremennye Tehnologii v Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10904360/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sovremennye Tehnologii v Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17691/stm2023.15.3.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sovremennye Tehnologii v Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17691/stm2023.15.3.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/28 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

目前用于改性由IV级钛合金制成的牙科植入物表面的等离子体电解氧化(PEO)技术在植入牙科中提供了可预测的长期结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plasma Electrolytic Oxidation for Dental Implant Surface Treatment.

Current technologies of plasma electrolytic oxidation (PEO) for modifying the surfaces of dental implants made of the Grade IV titan alloy provide predictable long-term results in implant dentistry. The aim of the study is to evaluate the efficacy of PEO technology comparing two types of surface modification of dental implants made of VT1-0 medical titanium alloy.

Materials and methods: 50 IRIS dental implants (Scientific Production Company LICOSTOM, Russia), 10-mm long and 4 mm in diameter, were manufactured from the VT1-0 alloy. The implant surface was treated by two PEO methods: 1) in the aqueous solution of alkaline electrolyte without any additional modifiers (PEO-Ti); 2) in the aqueous solution of orthophosphoric acid-based electrolyte containing calcium carbonate (PEO-Ca). Implants made of VT1-0 alloy after milling and without additional treatment served as control samples. The implant surfaces were studied by electron microscopy and energy dispersive X-ray spectrometry. Some of the implants were installed in sheep, samples were obtained at 2, 4, and 8 weeks and studied by microcomputer tomography.

Results: Regardless of the electrolyte composition, a highly developed porous surface was formed in the samples with PEO-modified surfaces. The surface of the PEO-Ti samples in a simple unmodified electrolyte was characterized by a large number of open pores with a wide range of size distribution from 200 nm to 3 μm. The pore size distribution was of a monomodal character, with a maximum near 0.23 μm. The PEO samples in the Ca-containing electrolyte had pores also in a wide range from ~80 nm to ~7 μm. The pore distribution, in contrast to PEO-Ti, was bimodal in nature, with the main maximum in the region of 1.05 μm and the concomitant maximum near 2.45 μm.The obtained surfaces of both types (PEO with Ca and Ti) possessed high purity and optimal microroughness for osseointegration. Both types of PEO treatment (PEO with Ca and Ti) have demonstrated a similar osseointegrative potential, nevertheless, the surface of the PEO-Ca showed a better contact with the implant surface (49.8%) than PEO-Ti (42.4%) obviously due to the presence of calcium in its composition.

Conclusion: The PEO-formed implant surfaces demonstrate high osseointegrative properties after any variants of treatment and show the potential for application in osteoporosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sovremennye Tehnologii v Medicine
Sovremennye Tehnologii v Medicine MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
1.80
自引率
0.00%
发文量
38
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信