{"title":"基于高阶运动学分析和奇异值分解的两种新型双中心机构的多分叉变异","authors":"Zhao Tang, J. Dai","doi":"10.1115/1.4062915","DOIUrl":null,"url":null,"abstract":"\n This paper explores a class of extended double-centered linkages and presents two novel multi-bifurcated double-centered metamorphic and reconfigurable mechanisms. Higher order kinematic analyses and singular value decomposition are combined to demonstrate the characteristics of multi-furcation and to reveal motion-branch transformation. These findings show that the presented double-centered linkages are able to evolve to distinct motion branches including two spherical 4R linkages, linesymmetric Bricard linkage or Bennett linkage. Furthermore, by exploring the local properties of singular configurations on geometric constraints and algebraic relationships, a systematic approach for the synthesis of the singular configurations can be designed to discover more novel multi-bifurcated metamorphic and reconfigurable mechanisms.","PeriodicalId":49155,"journal":{"name":"Journal of Mechanisms and Robotics-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Furcation Variations of Two Novel Double-Centered Mechanisms Based on Higher Order Kinematic Analyses and Singular Value Decomposition\",\"authors\":\"Zhao Tang, J. Dai\",\"doi\":\"10.1115/1.4062915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper explores a class of extended double-centered linkages and presents two novel multi-bifurcated double-centered metamorphic and reconfigurable mechanisms. Higher order kinematic analyses and singular value decomposition are combined to demonstrate the characteristics of multi-furcation and to reveal motion-branch transformation. These findings show that the presented double-centered linkages are able to evolve to distinct motion branches including two spherical 4R linkages, linesymmetric Bricard linkage or Bennett linkage. Furthermore, by exploring the local properties of singular configurations on geometric constraints and algebraic relationships, a systematic approach for the synthesis of the singular configurations can be designed to discover more novel multi-bifurcated metamorphic and reconfigurable mechanisms.\",\"PeriodicalId\":49155,\"journal\":{\"name\":\"Journal of Mechanisms and Robotics-Transactions of the Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanisms and Robotics-Transactions of the Asme\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062915\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanisms and Robotics-Transactions of the Asme","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1115/1.4062915","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Multi-Furcation Variations of Two Novel Double-Centered Mechanisms Based on Higher Order Kinematic Analyses and Singular Value Decomposition
This paper explores a class of extended double-centered linkages and presents two novel multi-bifurcated double-centered metamorphic and reconfigurable mechanisms. Higher order kinematic analyses and singular value decomposition are combined to demonstrate the characteristics of multi-furcation and to reveal motion-branch transformation. These findings show that the presented double-centered linkages are able to evolve to distinct motion branches including two spherical 4R linkages, linesymmetric Bricard linkage or Bennett linkage. Furthermore, by exploring the local properties of singular configurations on geometric constraints and algebraic relationships, a systematic approach for the synthesis of the singular configurations can be designed to discover more novel multi-bifurcated metamorphic and reconfigurable mechanisms.
期刊介绍:
Fundamental theory, algorithms, design, manufacture, and experimental validation for mechanisms and robots; Theoretical and applied kinematics; Mechanism synthesis and design; Analysis and design of robot manipulators, hands and legs, soft robotics, compliant mechanisms, origami and folded robots, printed robots, and haptic devices; Novel fabrication; Actuation and control techniques for mechanisms and robotics; Bio-inspired approaches to mechanism and robot design; Mechanics and design of micro- and nano-scale devices.