{"title":"1-甲基环丙烯通过增强抗氧化防御系统减轻菜豆采后冷害","authors":"Na Lv, Cai-Ping Wang, Hong-Tao Zhou, Chang-Jie Guo, Hao-Yan Zhang, Da-Yong Ren","doi":"10.17113/ftb.61.03.23.7860","DOIUrl":null,"url":null,"abstract":"<p><strong>Research background: </strong>Chilling injury is a major disorder affecting the quality of tropical and subtropical vegetables during low temperature storage. Snap bean (<i>Phaseolus vulgaris</i> L.) is sensitive to chilling injury. The main purpose of the present study is to investigate the alleviating effects of 1-methylcyclopropene (1-MCP) on chilling injury of snap bean. In addition, the related mechanisms were also detected from the perspective of the changes of antioxidant defense system.</p><p><strong>Experimental approach: </strong>Snap beans were exposed to different volume fractions of 1-MCP. After 24 h of treatment, snap beans were stored at 4 °C for up to 14 days. Chilling injury index, electrolyte leakage, titratable acidity and total soluble solids were determined. Contents of chlorophyll, ascorbic acid and malondialdehyde were assessed. The total antioxidant capacity, Fe(II) ion chelating capacity, scavenging capacities on free radicals and activities of antioxidant enzymes were detected. Total phenol content and activities of related metabolic enzymes were also determined.</p><p><strong>Results and conclusions: </strong>1-MCP treatment reduced chilling injury index, electrolyte leakage rate and malondialdehyde content of snap beans. The amounts of total soluble solids, titratable acid, ascorbic acid and total chlorophyll in 1-MCP-treated snap beans were significantly higher than those of control. The snap beans treated with 1-MCP showed stronger total antioxidant capacity and metal chelating activity. The 1-MCP treatment enhanced scavenging effects of snap beans on superoxide, hydroxyl and 1,1-diphenyl-2-trinitrophenylhydrazine radicals. The activities of peroxidase, ascorbate peroxidase, superoxide dismutase and catalase in 1-MCP-treated group were higher than of control. The treatment also enhanced the accumulation of phenolic compounds in snap beans by regulating the activities of phenol-metabolizing enzymes such as shikimate dehydrogenase, phenylalanine ammonia lyase enzyme, cinnamic acid 4-hydroxylase and polyphenol oxidase. In conclusion, with the mechanism that involves the activation of enzymatic and non-enzymatic antioxidant systems, 1-MCP has the ability to avoid chilling injury of snap bean.</p><p><strong>Novelty and scientific contribution: </strong>This study gives insights into whether 1-MCP can regulate postharvest cold resistance in vegetables by enhancing the enzymatic antioxidant system and inducing the accumulation of non-enzymatic antioxidants. Considering the results, 1-MCP treatment could be an effective method to alleviate postharvest chilling injury of snap beans during low temperature storage.</p>","PeriodicalId":12400,"journal":{"name":"Food Technology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10666942/pdf/","citationCount":"0","resultStr":"{\"title\":\"1-Methylcyclopropene Alleviates Postharvest Chilling Injury of Snap Beans by Enhancing Antioxidant Defense System.\",\"authors\":\"Na Lv, Cai-Ping Wang, Hong-Tao Zhou, Chang-Jie Guo, Hao-Yan Zhang, Da-Yong Ren\",\"doi\":\"10.17113/ftb.61.03.23.7860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Research background: </strong>Chilling injury is a major disorder affecting the quality of tropical and subtropical vegetables during low temperature storage. Snap bean (<i>Phaseolus vulgaris</i> L.) is sensitive to chilling injury. The main purpose of the present study is to investigate the alleviating effects of 1-methylcyclopropene (1-MCP) on chilling injury of snap bean. In addition, the related mechanisms were also detected from the perspective of the changes of antioxidant defense system.</p><p><strong>Experimental approach: </strong>Snap beans were exposed to different volume fractions of 1-MCP. After 24 h of treatment, snap beans were stored at 4 °C for up to 14 days. Chilling injury index, electrolyte leakage, titratable acidity and total soluble solids were determined. Contents of chlorophyll, ascorbic acid and malondialdehyde were assessed. The total antioxidant capacity, Fe(II) ion chelating capacity, scavenging capacities on free radicals and activities of antioxidant enzymes were detected. Total phenol content and activities of related metabolic enzymes were also determined.</p><p><strong>Results and conclusions: </strong>1-MCP treatment reduced chilling injury index, electrolyte leakage rate and malondialdehyde content of snap beans. The amounts of total soluble solids, titratable acid, ascorbic acid and total chlorophyll in 1-MCP-treated snap beans were significantly higher than those of control. The snap beans treated with 1-MCP showed stronger total antioxidant capacity and metal chelating activity. The 1-MCP treatment enhanced scavenging effects of snap beans on superoxide, hydroxyl and 1,1-diphenyl-2-trinitrophenylhydrazine radicals. The activities of peroxidase, ascorbate peroxidase, superoxide dismutase and catalase in 1-MCP-treated group were higher than of control. The treatment also enhanced the accumulation of phenolic compounds in snap beans by regulating the activities of phenol-metabolizing enzymes such as shikimate dehydrogenase, phenylalanine ammonia lyase enzyme, cinnamic acid 4-hydroxylase and polyphenol oxidase. In conclusion, with the mechanism that involves the activation of enzymatic and non-enzymatic antioxidant systems, 1-MCP has the ability to avoid chilling injury of snap bean.</p><p><strong>Novelty and scientific contribution: </strong>This study gives insights into whether 1-MCP can regulate postharvest cold resistance in vegetables by enhancing the enzymatic antioxidant system and inducing the accumulation of non-enzymatic antioxidants. Considering the results, 1-MCP treatment could be an effective method to alleviate postharvest chilling injury of snap beans during low temperature storage.</p>\",\"PeriodicalId\":12400,\"journal\":{\"name\":\"Food Technology and Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10666942/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Technology and Biotechnology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.17113/ftb.61.03.23.7860\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Technology and Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.17113/ftb.61.03.23.7860","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
1-Methylcyclopropene Alleviates Postharvest Chilling Injury of Snap Beans by Enhancing Antioxidant Defense System.
Research background: Chilling injury is a major disorder affecting the quality of tropical and subtropical vegetables during low temperature storage. Snap bean (Phaseolus vulgaris L.) is sensitive to chilling injury. The main purpose of the present study is to investigate the alleviating effects of 1-methylcyclopropene (1-MCP) on chilling injury of snap bean. In addition, the related mechanisms were also detected from the perspective of the changes of antioxidant defense system.
Experimental approach: Snap beans were exposed to different volume fractions of 1-MCP. After 24 h of treatment, snap beans were stored at 4 °C for up to 14 days. Chilling injury index, electrolyte leakage, titratable acidity and total soluble solids were determined. Contents of chlorophyll, ascorbic acid and malondialdehyde were assessed. The total antioxidant capacity, Fe(II) ion chelating capacity, scavenging capacities on free radicals and activities of antioxidant enzymes were detected. Total phenol content and activities of related metabolic enzymes were also determined.
Results and conclusions: 1-MCP treatment reduced chilling injury index, electrolyte leakage rate and malondialdehyde content of snap beans. The amounts of total soluble solids, titratable acid, ascorbic acid and total chlorophyll in 1-MCP-treated snap beans were significantly higher than those of control. The snap beans treated with 1-MCP showed stronger total antioxidant capacity and metal chelating activity. The 1-MCP treatment enhanced scavenging effects of snap beans on superoxide, hydroxyl and 1,1-diphenyl-2-trinitrophenylhydrazine radicals. The activities of peroxidase, ascorbate peroxidase, superoxide dismutase and catalase in 1-MCP-treated group were higher than of control. The treatment also enhanced the accumulation of phenolic compounds in snap beans by regulating the activities of phenol-metabolizing enzymes such as shikimate dehydrogenase, phenylalanine ammonia lyase enzyme, cinnamic acid 4-hydroxylase and polyphenol oxidase. In conclusion, with the mechanism that involves the activation of enzymatic and non-enzymatic antioxidant systems, 1-MCP has the ability to avoid chilling injury of snap bean.
Novelty and scientific contribution: This study gives insights into whether 1-MCP can regulate postharvest cold resistance in vegetables by enhancing the enzymatic antioxidant system and inducing the accumulation of non-enzymatic antioxidants. Considering the results, 1-MCP treatment could be an effective method to alleviate postharvest chilling injury of snap beans during low temperature storage.
期刊介绍:
Food Technology and Biotechnology (FTB) is a diamond open access, peer-reviewed international quarterly scientific journal that publishes papers covering a wide range of topics, including molecular biology, genetic engineering, biochemistry, microbiology, biochemical engineering and biotechnological processing, food science, analysis of food ingredients and final products, food processing and technology, oenology and waste treatment.
The Journal is published by the University of Zagreb, Faculty of Food Technology and Biotechnology, Croatia. It is an official journal of Croatian Society of Biotechnology and Slovenian Microbiological Society, financed by the Croatian Ministry of Science and Education, and supported by the Croatian Academy of Sciences and Arts.