Atanu Chatterjee, T. Ban, Atsushi Onizuka, G. Iannacchione
{"title":"热对流系统的模式形成:时空热统计、紧急通量和局部平衡","authors":"Atanu Chatterjee, T. Ban, Atsushi Onizuka, G. Iannacchione","doi":"10.1515/jnet-2021-0079","DOIUrl":null,"url":null,"abstract":"Abstract We discuss spatio-temporal pattern formation in two separate thermal convective systems. In the first system, hydrothermal waves (HTW) are modeled numerically in an annular channel. A temperature difference is imposed across the channel, which induces a surface tension gradient on the free surface of the fluid, leading to a surface flow towards the cold side. The flow pattern is axially symmetric along the temperature gradient with an internal circulation for a small temperature difference. This axially symmetric flow (ASF) becomes unstable beyond a given temperature difference threshold, and subsequently, symmetry-breaking flow, i. e., rotational oscillating waves or HTW appear. For the second system, Rayleigh–Bénard convection (RBC) is experimentally studied in the non-turbulent regime. When a thin film of liquid is heated, the competing forces of viscosity and buoyancy give rise to convective instabilities. This convective instability creates a spatio-temporal non-uniform temperature distribution on the surface of the fluid film. The surface temperature statistics are studied in both these systems as “order” and “disorder” phase separates. Although the mechanisms that give rise to convective instabilities are different in both cases, we find an agreement on the macroscopic nature of the thermal distributions in these emergent structures.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Pattern Formation in Thermal Convective Systems: Spatio-Temporal Thermal Statistics, Emergent Flux, and Local Equilibrium\",\"authors\":\"Atanu Chatterjee, T. Ban, Atsushi Onizuka, G. Iannacchione\",\"doi\":\"10.1515/jnet-2021-0079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We discuss spatio-temporal pattern formation in two separate thermal convective systems. In the first system, hydrothermal waves (HTW) are modeled numerically in an annular channel. A temperature difference is imposed across the channel, which induces a surface tension gradient on the free surface of the fluid, leading to a surface flow towards the cold side. The flow pattern is axially symmetric along the temperature gradient with an internal circulation for a small temperature difference. This axially symmetric flow (ASF) becomes unstable beyond a given temperature difference threshold, and subsequently, symmetry-breaking flow, i. e., rotational oscillating waves or HTW appear. For the second system, Rayleigh–Bénard convection (RBC) is experimentally studied in the non-turbulent regime. When a thin film of liquid is heated, the competing forces of viscosity and buoyancy give rise to convective instabilities. This convective instability creates a spatio-temporal non-uniform temperature distribution on the surface of the fluid film. The surface temperature statistics are studied in both these systems as “order” and “disorder” phase separates. Although the mechanisms that give rise to convective instabilities are different in both cases, we find an agreement on the macroscopic nature of the thermal distributions in these emergent structures.\",\"PeriodicalId\":16428,\"journal\":{\"name\":\"Journal of Non-Equilibrium Thermodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Non-Equilibrium Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/jnet-2021-0079\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Equilibrium Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/jnet-2021-0079","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Pattern Formation in Thermal Convective Systems: Spatio-Temporal Thermal Statistics, Emergent Flux, and Local Equilibrium
Abstract We discuss spatio-temporal pattern formation in two separate thermal convective systems. In the first system, hydrothermal waves (HTW) are modeled numerically in an annular channel. A temperature difference is imposed across the channel, which induces a surface tension gradient on the free surface of the fluid, leading to a surface flow towards the cold side. The flow pattern is axially symmetric along the temperature gradient with an internal circulation for a small temperature difference. This axially symmetric flow (ASF) becomes unstable beyond a given temperature difference threshold, and subsequently, symmetry-breaking flow, i. e., rotational oscillating waves or HTW appear. For the second system, Rayleigh–Bénard convection (RBC) is experimentally studied in the non-turbulent regime. When a thin film of liquid is heated, the competing forces of viscosity and buoyancy give rise to convective instabilities. This convective instability creates a spatio-temporal non-uniform temperature distribution on the surface of the fluid film. The surface temperature statistics are studied in both these systems as “order” and “disorder” phase separates. Although the mechanisms that give rise to convective instabilities are different in both cases, we find an agreement on the macroscopic nature of the thermal distributions in these emergent structures.
期刊介绍:
The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on a) newly observed non-equilibrium phenomena, b) analytic or numeric modeling for their interpretation, c) vanguard methods to describe non-equilibrium phenomena.
Contributions should – among others – present novel approaches to analyzing, modeling and optimizing processes of engineering relevance such as transport processes of mass, momentum and energy, separation of fluid phases, reproduction of living cells, or energy conversion. The journal is particularly interested in contributions which add to the basic understanding of non-equilibrium phenomena in science and engineering, with systems of interest ranging from the macro- to the nano-level.
The Journal of Non-Equilibrium Thermodynamics has recently expanded its scope to place new emphasis on theoretical and experimental investigations of non-equilibrium phenomena in thermophysical, chemical, biochemical and abstract model systems of engineering relevance. We are therefore pleased to invite submissions which present newly observed non-equilibrium phenomena, analytic or fuzzy models for their interpretation, or new methods for their description.