一种用于微创手术的新型2-DOF球形RCM机构的设计、尺寸综合和评价

IF 2.2 4区 计算机科学 Q2 ENGINEERING, MECHANICAL
Jianmin Li, Jiatong Wang, Jianchang Zhao, G. Wei
{"title":"一种用于微创手术的新型2-DOF球形RCM机构的设计、尺寸综合和评价","authors":"Jianmin Li, Jiatong Wang, Jianchang Zhao, G. Wei","doi":"10.1115/1.4062673","DOIUrl":null,"url":null,"abstract":"\n With the development of minimally invasive surgery (MIS) technology, higher requirements are put forward for the performance of remote center of motion (RCM) manipulator. This paper presents the conceptual design of a novel two degrees of freedom (2-DOF) spherical RCM mechanism, whose axes of all revote joints share the same RCM. Compared with the existing design, the proposed mechanism indicates a compact design and high structure stability, and the same scissor-like linkage makes it easy to realize modular design. It also has the advantages of singularity free and motion decoupling in its workspace, which simplifies the implementation and control of the manipulator. In addition, compared with the traditional spherical scissor linkage mechanism, the proposed mechanism adds a rotation constraint on the output shaft to provide better operating performance. In this paper, the kinematics and singularities of different cases are deduced and compared, and the kinematic model of the best case is established. According to the workspace and constraints in MIS, the optimal structural parameters of the mechanism are determined by dimensional synthesis with the goal of optimal global operation performance. Furthermore, a prototype is assembled to verify the performance of the proposed mechanism. The experimental results show that the 2-DOF prototype can provide a reliable RCM point. The compact design makes the manipulator have potential application prospects in MIS.","PeriodicalId":49155,"journal":{"name":"Journal of Mechanisms and Robotics-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, Dimensional Synthesis and Evaluation of a Novel 2-DOF Spherical RCM Mechanism for Minimally Invasive Surgery\",\"authors\":\"Jianmin Li, Jiatong Wang, Jianchang Zhao, G. Wei\",\"doi\":\"10.1115/1.4062673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n With the development of minimally invasive surgery (MIS) technology, higher requirements are put forward for the performance of remote center of motion (RCM) manipulator. This paper presents the conceptual design of a novel two degrees of freedom (2-DOF) spherical RCM mechanism, whose axes of all revote joints share the same RCM. Compared with the existing design, the proposed mechanism indicates a compact design and high structure stability, and the same scissor-like linkage makes it easy to realize modular design. It also has the advantages of singularity free and motion decoupling in its workspace, which simplifies the implementation and control of the manipulator. In addition, compared with the traditional spherical scissor linkage mechanism, the proposed mechanism adds a rotation constraint on the output shaft to provide better operating performance. In this paper, the kinematics and singularities of different cases are deduced and compared, and the kinematic model of the best case is established. According to the workspace and constraints in MIS, the optimal structural parameters of the mechanism are determined by dimensional synthesis with the goal of optimal global operation performance. Furthermore, a prototype is assembled to verify the performance of the proposed mechanism. The experimental results show that the 2-DOF prototype can provide a reliable RCM point. The compact design makes the manipulator have potential application prospects in MIS.\",\"PeriodicalId\":49155,\"journal\":{\"name\":\"Journal of Mechanisms and Robotics-Transactions of the Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanisms and Robotics-Transactions of the Asme\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062673\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanisms and Robotics-Transactions of the Asme","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1115/1.4062673","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

随着微创外科(MIS)技术的发展,对遥控运动中心(RCM)机械手的性能提出了更高的要求。本文提出了一种新颖的二自由度球面RCM机构的概念设计,该机构的所有铰关节的轴线共用同一RCM。与现有设计相比,所提出的机构结构紧凑,结构稳定性高,且相同的剪刀式连杆结构易于实现模块化设计。该方法在工作空间上具有无奇异性和运动解耦的优点,简化了机械手的实现和控制。此外,与传统的球面剪叉连杆机构相比,该机构在输出轴上增加了旋转约束,提供了更好的工作性能。本文对不同情况下的运动学和奇异性进行了推导和比较,建立了最优情况下的运动学模型。根据管理信息系统的工作空间和约束条件,以全局最优运行性能为目标,通过量纲综合确定机构的最优结构参数。此外,还组装了一个原型来验证所提出的机构的性能。实验结果表明,该二自由度样机可以提供可靠的RCM点。紧凑的设计使机械手在MIS中具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design, Dimensional Synthesis and Evaluation of a Novel 2-DOF Spherical RCM Mechanism for Minimally Invasive Surgery
With the development of minimally invasive surgery (MIS) technology, higher requirements are put forward for the performance of remote center of motion (RCM) manipulator. This paper presents the conceptual design of a novel two degrees of freedom (2-DOF) spherical RCM mechanism, whose axes of all revote joints share the same RCM. Compared with the existing design, the proposed mechanism indicates a compact design and high structure stability, and the same scissor-like linkage makes it easy to realize modular design. It also has the advantages of singularity free and motion decoupling in its workspace, which simplifies the implementation and control of the manipulator. In addition, compared with the traditional spherical scissor linkage mechanism, the proposed mechanism adds a rotation constraint on the output shaft to provide better operating performance. In this paper, the kinematics and singularities of different cases are deduced and compared, and the kinematic model of the best case is established. According to the workspace and constraints in MIS, the optimal structural parameters of the mechanism are determined by dimensional synthesis with the goal of optimal global operation performance. Furthermore, a prototype is assembled to verify the performance of the proposed mechanism. The experimental results show that the 2-DOF prototype can provide a reliable RCM point. The compact design makes the manipulator have potential application prospects in MIS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
15.40%
发文量
131
审稿时长
4.5 months
期刊介绍: Fundamental theory, algorithms, design, manufacture, and experimental validation for mechanisms and robots; Theoretical and applied kinematics; Mechanism synthesis and design; Analysis and design of robot manipulators, hands and legs, soft robotics, compliant mechanisms, origami and folded robots, printed robots, and haptic devices; Novel fabrication; Actuation and control techniques for mechanisms and robotics; Bio-inspired approaches to mechanism and robot design; Mechanics and design of micro- and nano-scale devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信