{"title":"基于图像分割和改进RESNET-50的航空连接器引脚缺陷检测方案","authors":"Hailong Yang, Yinghao Liu, Tian Xia","doi":"10.1142/s0219467824500116","DOIUrl":null,"url":null,"abstract":"In this paper, a new detection method of pin defects based on image segmentation and ResNe-50 is proposed, which realizes the defect detection of faulty pins in many aviation connectors. In this paper, a new dataset image segmentation method is used to segment many aviation connectors in a single image to generate a dataset, which reduces the tedious work of manually labeling the dataset. In the defect detection model, based on ResNet-50, a ResNet-B residual structure is introduced to reduce the loss of features during information extraction; a continuously differentiable CELU is used as the activation function to reduce the neuron death problem of ReLU; a new deformable convolution network (DCN v2) is introduced as the convolution kernel structure of the model to improve the recognition of aviation connectors with prominent geometric deformation pin recognition. The improved model achieved 97.2% and 94.4% accuracy for skewed and missing pins, respectively, in the experiments. The detection accuracy improved by 1.91% to 96.62% compared to the conventional ResNet-50. Compared with the traditional model, the improved model has better generalization ability.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Defect Detection Scheme of Pins for Aviation Connectors Based on Image Segmentation and Improved RESNET-50\",\"authors\":\"Hailong Yang, Yinghao Liu, Tian Xia\",\"doi\":\"10.1142/s0219467824500116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new detection method of pin defects based on image segmentation and ResNe-50 is proposed, which realizes the defect detection of faulty pins in many aviation connectors. In this paper, a new dataset image segmentation method is used to segment many aviation connectors in a single image to generate a dataset, which reduces the tedious work of manually labeling the dataset. In the defect detection model, based on ResNet-50, a ResNet-B residual structure is introduced to reduce the loss of features during information extraction; a continuously differentiable CELU is used as the activation function to reduce the neuron death problem of ReLU; a new deformable convolution network (DCN v2) is introduced as the convolution kernel structure of the model to improve the recognition of aviation connectors with prominent geometric deformation pin recognition. The improved model achieved 97.2% and 94.4% accuracy for skewed and missing pins, respectively, in the experiments. The detection accuracy improved by 1.91% to 96.62% compared to the conventional ResNet-50. Compared with the traditional model, the improved model has better generalization ability.\",\"PeriodicalId\":44688,\"journal\":{\"name\":\"International Journal of Image and Graphics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Image and Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219467824500116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219467824500116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Defect Detection Scheme of Pins for Aviation Connectors Based on Image Segmentation and Improved RESNET-50
In this paper, a new detection method of pin defects based on image segmentation and ResNe-50 is proposed, which realizes the defect detection of faulty pins in many aviation connectors. In this paper, a new dataset image segmentation method is used to segment many aviation connectors in a single image to generate a dataset, which reduces the tedious work of manually labeling the dataset. In the defect detection model, based on ResNet-50, a ResNet-B residual structure is introduced to reduce the loss of features during information extraction; a continuously differentiable CELU is used as the activation function to reduce the neuron death problem of ReLU; a new deformable convolution network (DCN v2) is introduced as the convolution kernel structure of the model to improve the recognition of aviation connectors with prominent geometric deformation pin recognition. The improved model achieved 97.2% and 94.4% accuracy for skewed and missing pins, respectively, in the experiments. The detection accuracy improved by 1.91% to 96.62% compared to the conventional ResNet-50. Compared with the traditional model, the improved model has better generalization ability.