{"title":"参与面包小麦(Triticum aestivum L.)生物强化的烟酰胺氨基转移酶(NAAT)基因的进一步研究","authors":"Tinku Gautam , Irfat Jan , Ritu Batra , Kalpana Singh , Renu Pandey , Pradeep Kumar Sharma , Harindra Singh Balyan , Pushpendra Kumar Gupta","doi":"10.1016/j.plgene.2022.100389","DOIUrl":null,"url":null,"abstract":"<div><p>Graminaceous plants take up iron (Fe) from soil using specialized chelating agents known as phytosiderophores, which largely comprise mugineic acids (MAs). Biosynthesis of MAs involves three enzymes, of which nicotianamine aminotransferase (NAAT) catalyses the key step in the synthesis of 2′-deoxymugineic acids (DMA). In the present study, a total of 24 TaNAAT genes distributed on 15 of the 21 bread wheat chromosomes were identified using the whole genome sequence. We also identified NAAT genes in diploid and tetraploid relatives of bread wheat. Two gene duplication events involving NAAT genes were also identified, one in <em>Triticum urartu</em> (AA) and the other in <em>Aegilops tauschii</em> (DD). In the promoter regions, a number of cis-regulatory elements were also identified for responses to biotic and abiotic stresses and to different developmental stages. Phylogenetic analysis using NAAT proteins of wheat and seven other plant species led to the identification of six clusters. Both <em>in silico</em> and qRT-PCR expression analyses indicated relatively higher expression of TaNAAT genes in shoot and root of genotypes with low Fe content. The results provided insights into the structure and function of TaNAAT genes, which may further help in planning strategies to develop high yielding wheat varieties tolerant to Fe-deficiency.</p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"33 ","pages":"Article 100389"},"PeriodicalIF":2.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Further studies on nicotianamine aminotransferase (NAAT) genes involved in biofortification in bread wheat (Triticum aestivum L.)\",\"authors\":\"Tinku Gautam , Irfat Jan , Ritu Batra , Kalpana Singh , Renu Pandey , Pradeep Kumar Sharma , Harindra Singh Balyan , Pushpendra Kumar Gupta\",\"doi\":\"10.1016/j.plgene.2022.100389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Graminaceous plants take up iron (Fe) from soil using specialized chelating agents known as phytosiderophores, which largely comprise mugineic acids (MAs). Biosynthesis of MAs involves three enzymes, of which nicotianamine aminotransferase (NAAT) catalyses the key step in the synthesis of 2′-deoxymugineic acids (DMA). In the present study, a total of 24 TaNAAT genes distributed on 15 of the 21 bread wheat chromosomes were identified using the whole genome sequence. We also identified NAAT genes in diploid and tetraploid relatives of bread wheat. Two gene duplication events involving NAAT genes were also identified, one in <em>Triticum urartu</em> (AA) and the other in <em>Aegilops tauschii</em> (DD). In the promoter regions, a number of cis-regulatory elements were also identified for responses to biotic and abiotic stresses and to different developmental stages. Phylogenetic analysis using NAAT proteins of wheat and seven other plant species led to the identification of six clusters. Both <em>in silico</em> and qRT-PCR expression analyses indicated relatively higher expression of TaNAAT genes in shoot and root of genotypes with low Fe content. The results provided insights into the structure and function of TaNAAT genes, which may further help in planning strategies to develop high yielding wheat varieties tolerant to Fe-deficiency.</p></div>\",\"PeriodicalId\":38041,\"journal\":{\"name\":\"Plant Gene\",\"volume\":\"33 \",\"pages\":\"Article 100389\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Gene\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352407322000397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Gene","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352407322000397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Further studies on nicotianamine aminotransferase (NAAT) genes involved in biofortification in bread wheat (Triticum aestivum L.)
Graminaceous plants take up iron (Fe) from soil using specialized chelating agents known as phytosiderophores, which largely comprise mugineic acids (MAs). Biosynthesis of MAs involves three enzymes, of which nicotianamine aminotransferase (NAAT) catalyses the key step in the synthesis of 2′-deoxymugineic acids (DMA). In the present study, a total of 24 TaNAAT genes distributed on 15 of the 21 bread wheat chromosomes were identified using the whole genome sequence. We also identified NAAT genes in diploid and tetraploid relatives of bread wheat. Two gene duplication events involving NAAT genes were also identified, one in Triticum urartu (AA) and the other in Aegilops tauschii (DD). In the promoter regions, a number of cis-regulatory elements were also identified for responses to biotic and abiotic stresses and to different developmental stages. Phylogenetic analysis using NAAT proteins of wheat and seven other plant species led to the identification of six clusters. Both in silico and qRT-PCR expression analyses indicated relatively higher expression of TaNAAT genes in shoot and root of genotypes with low Fe content. The results provided insights into the structure and function of TaNAAT genes, which may further help in planning strategies to develop high yielding wheat varieties tolerant to Fe-deficiency.
Plant GeneAgricultural and Biological Sciences-Plant Science
CiteScore
4.50
自引率
0.00%
发文量
42
审稿时长
51 days
期刊介绍:
Plant Gene publishes papers that focus on the regulation, expression, function and evolution of genes in plants, algae and other photosynthesizing organisms (e.g., cyanobacteria), and plant-associated microorganisms. Plant Gene strives to be a diverse plant journal and topics in multiple fields will be considered for publication. Although not limited to the following, some general topics include: Gene discovery and characterization, Gene regulation in response to environmental stress (e.g., salinity, drought, etc.), Genetic effects of transposable elements, Genetic control of secondary metabolic pathways and metabolic enzymes. Herbal Medicine - regulation and medicinal properties of plant products, Plant hormonal signaling, Plant evolutionary genetics, molecular evolution, population genetics, and phylogenetics, Profiling of plant gene expression and genetic variation, Plant-microbe interactions (e.g., influence of endophytes on gene expression; horizontal gene transfer studies; etc.), Agricultural genetics - biotechnology and crop improvement.