-曲线上向量丛模的连通性

IF 1.1 2区 数学 Q1 MATHEMATICS
A. Hogadi, Suraj Yadav
{"title":"-曲线上向量丛模的连通性","authors":"A. Hogadi, Suraj Yadav","doi":"10.1017/s1474748023000087","DOIUrl":null,"url":null,"abstract":"\n\t <jats:p>In this note, we prove that the moduli stack of vector bundles on a curve with a fixed determinant is <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748023000087_inline2.png\" />\n\t\t<jats:tex-math>\n${\\mathbb A}^1$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>-connected. We obtain this result by classifying vector bundles on a curve up to <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748023000087_inline3.png\" />\n\t\t<jats:tex-math>\n${\\mathbb A}^1$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>-concordance. Consequently, we classify <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748023000087_inline4.png\" />\n\t\t<jats:tex-math>\n${\\mathbb P}^n$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>-bundles on a curve up to <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748023000087_inline5.png\" />\n\t\t<jats:tex-math>\n${\\mathbb A}^1$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>-weak equivalence, extending a result in [3] of Asok-Morel. We also give an explicit example of a variety which is <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748023000087_inline6.png\" />\n\t\t<jats:tex-math>\n${\\mathbb A}^1$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>-<jats:italic>h</jats:italic>-cobordant to a projective bundle over <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748023000087_inline7.png\" />\n\t\t<jats:tex-math>\n${\\mathbb P}^2$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> but does not have the structure of a projective bundle over <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748023000087_inline8.png\" />\n\t\t<jats:tex-math>\n${\\mathbb P}^2$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>, thus answering a question of Asok-Kebekus-Wendt [2].</jats:p>","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"-CONNECTEDNESS OF MODULI OF VECTOR BUNDLES ON A CURVE\",\"authors\":\"A. Hogadi, Suraj Yadav\",\"doi\":\"10.1017/s1474748023000087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\t <jats:p>In this note, we prove that the moduli stack of vector bundles on a curve with a fixed determinant is <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748023000087_inline2.png\\\" />\\n\\t\\t<jats:tex-math>\\n${\\\\mathbb A}^1$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>-connected. We obtain this result by classifying vector bundles on a curve up to <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748023000087_inline3.png\\\" />\\n\\t\\t<jats:tex-math>\\n${\\\\mathbb A}^1$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>-concordance. Consequently, we classify <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748023000087_inline4.png\\\" />\\n\\t\\t<jats:tex-math>\\n${\\\\mathbb P}^n$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>-bundles on a curve up to <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748023000087_inline5.png\\\" />\\n\\t\\t<jats:tex-math>\\n${\\\\mathbb A}^1$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>-weak equivalence, extending a result in [3] of Asok-Morel. We also give an explicit example of a variety which is <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748023000087_inline6.png\\\" />\\n\\t\\t<jats:tex-math>\\n${\\\\mathbb A}^1$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>-<jats:italic>h</jats:italic>-cobordant to a projective bundle over <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748023000087_inline7.png\\\" />\\n\\t\\t<jats:tex-math>\\n${\\\\mathbb P}^2$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> but does not have the structure of a projective bundle over <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748023000087_inline8.png\\\" />\\n\\t\\t<jats:tex-math>\\n${\\\\mathbb P}^2$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>, thus answering a question of Asok-Kebekus-Wendt [2].</jats:p>\",\"PeriodicalId\":50002,\"journal\":{\"name\":\"Journal of the Institute of Mathematics of Jussieu\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Institute of Mathematics of Jussieu\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s1474748023000087\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Institute of Mathematics of Jussieu","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1474748023000087","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了具有固定行列式的曲线上向量丛的模栈是${\mathbb a}^1$-连通的。我们通过对高达${\mathbb a}^1$-一致性的曲线上的向量丛进行分类来获得这个结果。因此,我们将曲线上的${\mathbb P}^n$-丛分类为${\ mathbb a}^1$-弱等价,扩展了Asok-Morel[3]中的一个结果。我们还给出了一个变种的显式例子,它是${\mathbb a}^1$-h-coordant到${\ mathbb P}^2$上的射影丛,但不具有${\mathbb P}^2$上的投射丛的结构,从而回答了Asok Kebekus-Wendt[2]的一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
-CONNECTEDNESS OF MODULI OF VECTOR BUNDLES ON A CURVE
In this note, we prove that the moduli stack of vector bundles on a curve with a fixed determinant is ${\mathbb A}^1$ -connected. We obtain this result by classifying vector bundles on a curve up to ${\mathbb A}^1$ -concordance. Consequently, we classify ${\mathbb P}^n$ -bundles on a curve up to ${\mathbb A}^1$ -weak equivalence, extending a result in [3] of Asok-Morel. We also give an explicit example of a variety which is ${\mathbb A}^1$ -h-cobordant to a projective bundle over ${\mathbb P}^2$ but does not have the structure of a projective bundle over ${\mathbb P}^2$ , thus answering a question of Asok-Kebekus-Wendt [2].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
54
审稿时长
>12 weeks
期刊介绍: The Journal of the Institute of Mathematics of Jussieu publishes original research papers in any branch of pure mathematics; papers in logic and applied mathematics will also be considered, particularly when they have direct connections with pure mathematics. Its policy is to feature a wide variety of research areas and it welcomes the submission of papers from all parts of the world. Selection for publication is on the basis of reports from specialist referees commissioned by the Editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信