{"title":"人工微调是/否问题回答任务","authors":"Dimitris Dimitriadis, Grigorios Tsoumakas","doi":"10.1017/s1351324922000286","DOIUrl":null,"url":null,"abstract":"\n Current research in yes/no question answering (QA) focuses on transfer learning techniques and transformer-based models. Models trained on large corpora are fine-tuned on tasks similar to yes/no QA, and then the captured knowledge is transferred for solving the yes/no QA task. Most previous studies use existing similar tasks, such as natural language inference or extractive QA, for the fine-tuning step. This paper follows a different perspective, hypothesizing that an artificial yes/no task can transfer useful knowledge for improving the performance of yes/no QA. We introduce three such tasks for this purpose, by adapting three corresponding existing tasks: candidate answer validation, sentiment classification, and lexical simplification. Furthermore, we experimented with three different variations of the BERT model (BERT base, RoBERTa, and ALBERT). The results show that our hypothesis holds true for all artificial tasks, despite the small size of the corresponding datasets that are used for the fine-tuning process, the differences between these tasks, the decisions that we made to adapt the original ones, and the tasks’ simplicity. This gives an alternative perspective on how to deal with the yes/no QA problem, that is more creative, and at the same time more flexible, as it can exploit multiple other existing tasks and corresponding datasets to improve yes/no QA models.","PeriodicalId":49143,"journal":{"name":"Natural Language Engineering","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial fine-tuning tasks for yes/no question answering\",\"authors\":\"Dimitris Dimitriadis, Grigorios Tsoumakas\",\"doi\":\"10.1017/s1351324922000286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Current research in yes/no question answering (QA) focuses on transfer learning techniques and transformer-based models. Models trained on large corpora are fine-tuned on tasks similar to yes/no QA, and then the captured knowledge is transferred for solving the yes/no QA task. Most previous studies use existing similar tasks, such as natural language inference or extractive QA, for the fine-tuning step. This paper follows a different perspective, hypothesizing that an artificial yes/no task can transfer useful knowledge for improving the performance of yes/no QA. We introduce three such tasks for this purpose, by adapting three corresponding existing tasks: candidate answer validation, sentiment classification, and lexical simplification. Furthermore, we experimented with three different variations of the BERT model (BERT base, RoBERTa, and ALBERT). The results show that our hypothesis holds true for all artificial tasks, despite the small size of the corresponding datasets that are used for the fine-tuning process, the differences between these tasks, the decisions that we made to adapt the original ones, and the tasks’ simplicity. This gives an alternative perspective on how to deal with the yes/no QA problem, that is more creative, and at the same time more flexible, as it can exploit multiple other existing tasks and corresponding datasets to improve yes/no QA models.\",\"PeriodicalId\":49143,\"journal\":{\"name\":\"Natural Language Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Language Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s1351324922000286\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s1351324922000286","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Artificial fine-tuning tasks for yes/no question answering
Current research in yes/no question answering (QA) focuses on transfer learning techniques and transformer-based models. Models trained on large corpora are fine-tuned on tasks similar to yes/no QA, and then the captured knowledge is transferred for solving the yes/no QA task. Most previous studies use existing similar tasks, such as natural language inference or extractive QA, for the fine-tuning step. This paper follows a different perspective, hypothesizing that an artificial yes/no task can transfer useful knowledge for improving the performance of yes/no QA. We introduce three such tasks for this purpose, by adapting three corresponding existing tasks: candidate answer validation, sentiment classification, and lexical simplification. Furthermore, we experimented with three different variations of the BERT model (BERT base, RoBERTa, and ALBERT). The results show that our hypothesis holds true for all artificial tasks, despite the small size of the corresponding datasets that are used for the fine-tuning process, the differences between these tasks, the decisions that we made to adapt the original ones, and the tasks’ simplicity. This gives an alternative perspective on how to deal with the yes/no QA problem, that is more creative, and at the same time more flexible, as it can exploit multiple other existing tasks and corresponding datasets to improve yes/no QA models.
期刊介绍:
Natural Language Engineering meets the needs of professionals and researchers working in all areas of computerised language processing, whether from the perspective of theoretical or descriptive linguistics, lexicology, computer science or engineering. Its aim is to bridge the gap between traditional computational linguistics research and the implementation of practical applications with potential real-world use. As well as publishing research articles on a broad range of topics - from text analysis, machine translation, information retrieval and speech analysis and generation to integrated systems and multi modal interfaces - it also publishes special issues on specific areas and technologies within these topics, an industry watch column and book reviews.