{"title":"关联代数的真李自同构","authors":"É. Fornaroli, M. Khrypchenko, E. A. Santulo","doi":"10.1017/S0017089522000015","DOIUrl":null,"url":null,"abstract":"Abstract Let X be a finite connected poset and K a field. We study the question, when all Lie automorphisms of the incidence algebra I(X, K) are proper. Without any restriction on the length of X, we find only a sufficient condition involving certain equivalence relation on the set of maximal chains of X. For some classes of posets of length one, such as finite connected crownless posets (i.e., without weak crown subposets), crowns, and ordinal sums of two anti-chains, we give a complete answer.","PeriodicalId":50417,"journal":{"name":"Glasgow Mathematical Journal","volume":"64 1","pages":"702 - 715"},"PeriodicalIF":0.5000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Proper Lie automorphisms of incidence algebras\",\"authors\":\"É. Fornaroli, M. Khrypchenko, E. A. Santulo\",\"doi\":\"10.1017/S0017089522000015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let X be a finite connected poset and K a field. We study the question, when all Lie automorphisms of the incidence algebra I(X, K) are proper. Without any restriction on the length of X, we find only a sufficient condition involving certain equivalence relation on the set of maximal chains of X. For some classes of posets of length one, such as finite connected crownless posets (i.e., without weak crown subposets), crowns, and ordinal sums of two anti-chains, we give a complete answer.\",\"PeriodicalId\":50417,\"journal\":{\"name\":\"Glasgow Mathematical Journal\",\"volume\":\"64 1\",\"pages\":\"702 - 715\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glasgow Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0017089522000015\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glasgow Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0017089522000015","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract Let X be a finite connected poset and K a field. We study the question, when all Lie automorphisms of the incidence algebra I(X, K) are proper. Without any restriction on the length of X, we find only a sufficient condition involving certain equivalence relation on the set of maximal chains of X. For some classes of posets of length one, such as finite connected crownless posets (i.e., without weak crown subposets), crowns, and ordinal sums of two anti-chains, we give a complete answer.
期刊介绍:
Glasgow Mathematical Journal publishes original research papers in any branch of pure and applied mathematics. An international journal, its policy is to feature a wide variety of research areas, which in recent issues have included ring theory, group theory, functional analysis, combinatorics, differential equations, differential geometry, number theory, algebraic topology, and the application of such methods in applied mathematics.
The journal has a web-based submission system for articles. For details of how to to upload your paper see GMJ - Online Submission Guidelines or go directly to the submission site.