{"title":"肽功能化纳米载体在骨质疏松症中骨特异性递送甲状旁腺激素(1-34)","authors":"Sagar Salave, Dhwani Rana, Derajram Benival","doi":"10.2174/2468187312666211220112324","DOIUrl":null,"url":null,"abstract":"\n\nOsteoporosis represents a major public health burden especially considering the aging population worldwide. Treatment modalities for osteoporosis are classified into two categories based on the effect on bone remodelling: anabolic drugs and antiresorptive drugs. Anabolic drugs are preferred as it stimulates new bone formation. Currently, PTH (1-34) is the only peptide-based drug approved as an anabolic agent for the treatment of osteoporosis by both USFDA as well as EMA. However, its non-specific delivery results in prolonged kidney exposure, causing hypercalcemia. Nanotechnology-based drug delivery systems functionalized by conjugating it with homing moieties, such as peptides, offer an advantage of targeted delivery with reduced off-target effects. Here, we propose an innovative and targeted nanovesicle approach to efficiently deliver PTH (1-34) to the bone surface using peptides as a homing moiety. The proposed innovative delivery approach will augment the specific interaction between the drug and bone surface without producing side effects. This will reduce the off-target effects of PTH (1-34), and at the same time, it will also improve the outcome of anabolic therapy. Therefore, we postulate that the proposed innovative drug delivery approach for PTH (1-34) will establish as a promising therapy for osteoporotic patients, specifically in postmenopausal women who are at greater risk of bone fracture.\n","PeriodicalId":10818,"journal":{"name":"Current Nanomedicine","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Peptide Functionalised Nanocarriers for Bone Specific Delivery of PTH (1-34) in Osteoporosis\",\"authors\":\"Sagar Salave, Dhwani Rana, Derajram Benival\",\"doi\":\"10.2174/2468187312666211220112324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nOsteoporosis represents a major public health burden especially considering the aging population worldwide. Treatment modalities for osteoporosis are classified into two categories based on the effect on bone remodelling: anabolic drugs and antiresorptive drugs. Anabolic drugs are preferred as it stimulates new bone formation. Currently, PTH (1-34) is the only peptide-based drug approved as an anabolic agent for the treatment of osteoporosis by both USFDA as well as EMA. However, its non-specific delivery results in prolonged kidney exposure, causing hypercalcemia. Nanotechnology-based drug delivery systems functionalized by conjugating it with homing moieties, such as peptides, offer an advantage of targeted delivery with reduced off-target effects. Here, we propose an innovative and targeted nanovesicle approach to efficiently deliver PTH (1-34) to the bone surface using peptides as a homing moiety. The proposed innovative delivery approach will augment the specific interaction between the drug and bone surface without producing side effects. This will reduce the off-target effects of PTH (1-34), and at the same time, it will also improve the outcome of anabolic therapy. Therefore, we postulate that the proposed innovative drug delivery approach for PTH (1-34) will establish as a promising therapy for osteoporotic patients, specifically in postmenopausal women who are at greater risk of bone fracture.\\n\",\"PeriodicalId\":10818,\"journal\":{\"name\":\"Current Nanomedicine\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Nanomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2468187312666211220112324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Nanomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2468187312666211220112324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Peptide Functionalised Nanocarriers for Bone Specific Delivery of PTH (1-34) in Osteoporosis
Osteoporosis represents a major public health burden especially considering the aging population worldwide. Treatment modalities for osteoporosis are classified into two categories based on the effect on bone remodelling: anabolic drugs and antiresorptive drugs. Anabolic drugs are preferred as it stimulates new bone formation. Currently, PTH (1-34) is the only peptide-based drug approved as an anabolic agent for the treatment of osteoporosis by both USFDA as well as EMA. However, its non-specific delivery results in prolonged kidney exposure, causing hypercalcemia. Nanotechnology-based drug delivery systems functionalized by conjugating it with homing moieties, such as peptides, offer an advantage of targeted delivery with reduced off-target effects. Here, we propose an innovative and targeted nanovesicle approach to efficiently deliver PTH (1-34) to the bone surface using peptides as a homing moiety. The proposed innovative delivery approach will augment the specific interaction between the drug and bone surface without producing side effects. This will reduce the off-target effects of PTH (1-34), and at the same time, it will also improve the outcome of anabolic therapy. Therefore, we postulate that the proposed innovative drug delivery approach for PTH (1-34) will establish as a promising therapy for osteoporotic patients, specifically in postmenopausal women who are at greater risk of bone fracture.