正特性和混合特性的四倍相对最小模型程序

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
C. Hacon, J. Witaszek
{"title":"正特性和混合特性的四倍相对最小模型程序","authors":"C. Hacon, J. Witaszek","doi":"10.1017/fmp.2023.6","DOIUrl":null,"url":null,"abstract":"Abstract We show the validity of two special cases of the four-dimensional minimal model program (MMP) in characteristic \n$p>5$\n : for contractions to \n${\\mathbb {Q}}$\n -factorial fourfolds and in families over curves (‘semistable MMP’). We also provide their mixed characteristic analogues. As a corollary, we show that liftability of positive characteristic threefolds is stable under the MMP and that liftability of three-dimensional Calabi–Yau varieties is a birational invariant. Our results are partially contingent upon the existence of log resolutions.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"On the relative minimal model program for fourfolds in positive and mixed characteristic\",\"authors\":\"C. Hacon, J. Witaszek\",\"doi\":\"10.1017/fmp.2023.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We show the validity of two special cases of the four-dimensional minimal model program (MMP) in characteristic \\n$p>5$\\n : for contractions to \\n${\\\\mathbb {Q}}$\\n -factorial fourfolds and in families over curves (‘semistable MMP’). We also provide their mixed characteristic analogues. As a corollary, we show that liftability of positive characteristic threefolds is stable under the MMP and that liftability of three-dimensional Calabi–Yau varieties is a birational invariant. Our results are partially contingent upon the existence of log resolutions.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2020-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fmp.2023.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2023.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 9

摘要

摘要我们证明了特征$p>5$中四维最小模型程序(MMP)的两种特殊情况的有效性:收缩到${\mathbb{Q}}$阶乘四倍和在曲线上的族中(“化学MMP”)。我们还提供了它们的混合特征类似物。作为推论,我们证明了正特征三重的可举性在MMP下是稳定的,并且三维Calabi–Yau品种的可举度是双条件不变量。我们的结果部分取决于日志分辨率的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the relative minimal model program for fourfolds in positive and mixed characteristic
Abstract We show the validity of two special cases of the four-dimensional minimal model program (MMP) in characteristic $p>5$ : for contractions to ${\mathbb {Q}}$ -factorial fourfolds and in families over curves (‘semistable MMP’). We also provide their mixed characteristic analogues. As a corollary, we show that liftability of positive characteristic threefolds is stable under the MMP and that liftability of three-dimensional Calabi–Yau varieties is a birational invariant. Our results are partially contingent upon the existence of log resolutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信