法诺变种的Kodaira消失的失败,以及不是Cohen Macaulay的终端奇点

IF 0.9 1区 数学 Q2 MATHEMATICS
B. Totaro
{"title":"法诺变种的Kodaira消失的失败,以及不是Cohen Macaulay的终端奇点","authors":"B. Totaro","doi":"10.1090/JAG/724","DOIUrl":null,"url":null,"abstract":"We show that the Kodaira vanishing theorem can fail on smooth Fano varieties of any characteristic \n\n \n \n p\n >\n 0\n \n p>0\n \n\n. Taking cones over some of these varieties, we give the first examples of terminal singularities which are not Cohen-Macaulay. By a different method, we construct a terminal singularity of dimension 3 (the lowest possible) in characteristic 2 which is not Cohen-Macaulay.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2017-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/JAG/724","citationCount":"32","resultStr":"{\"title\":\"The failure of Kodaira vanishing for Fano varieties, and terminal singularities that are not Cohen-Macaulay\",\"authors\":\"B. Totaro\",\"doi\":\"10.1090/JAG/724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the Kodaira vanishing theorem can fail on smooth Fano varieties of any characteristic \\n\\n \\n \\n p\\n >\\n 0\\n \\n p>0\\n \\n\\n. Taking cones over some of these varieties, we give the first examples of terminal singularities which are not Cohen-Macaulay. By a different method, we construct a terminal singularity of dimension 3 (the lowest possible) in characteristic 2 which is not Cohen-Macaulay.\",\"PeriodicalId\":54887,\"journal\":{\"name\":\"Journal of Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2017-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/JAG/724\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/JAG/724\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/JAG/724","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 32

摘要

我们证明了Kodaira消失定理在任意特征p>0的光滑Fano变量上失效。在这些变种中,我们首先给出非科恩-麦考利端点奇点的第一个例子。通过另一种方法,我们在特征2上构造了一个3维(最低可能)的终端奇点,它不是Cohen-Macaulay。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The failure of Kodaira vanishing for Fano varieties, and terminal singularities that are not Cohen-Macaulay
We show that the Kodaira vanishing theorem can fail on smooth Fano varieties of any characteristic p > 0 p>0 . Taking cones over some of these varieties, we give the first examples of terminal singularities which are not Cohen-Macaulay. By a different method, we construct a terminal singularity of dimension 3 (the lowest possible) in characteristic 2 which is not Cohen-Macaulay.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
5.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology. This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信