{"title":"实验工具减轻细菌合成生物学负担","authors":"Alice Grob , Roberto Di Blasi , Francesca Ceroni","doi":"10.1016/j.coisb.2021.100393","DOIUrl":null,"url":null,"abstract":"<div><p>Cellular burden limits the applications of bacterial synthetic biology. Experimental approaches for burden minimisation have recently become available. Tools to identify construct design with low footprint on the host include capacity monitors that quantify cellular capacity, high-throughput approaches and cell-free systems for construct prototyping. Orthogonal ribosomes and feedback controllers are instead useful to seek control of resource allocation and lower burden. Other approaches include genome reduction to increase the available resource pool and synthetic addiction to couple cell fitness and product accumulation. However, controlling the cellular response to exogenous expression is still a challenge, and more tools are needed to widen the applications of synthetic biology. Further effort that combines novel evolutionary data with burden-aware tools can set the foundation to increase the stability and robustness of future genetic systems.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452310021000883/pdfft?md5=a6f739a545d3dbf5f04da061e5f75ff1&pid=1-s2.0-S2452310021000883-main.pdf","citationCount":"10","resultStr":"{\"title\":\"Experimental tools to reduce the burden of bacterial synthetic biology\",\"authors\":\"Alice Grob , Roberto Di Blasi , Francesca Ceroni\",\"doi\":\"10.1016/j.coisb.2021.100393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cellular burden limits the applications of bacterial synthetic biology. Experimental approaches for burden minimisation have recently become available. Tools to identify construct design with low footprint on the host include capacity monitors that quantify cellular capacity, high-throughput approaches and cell-free systems for construct prototyping. Orthogonal ribosomes and feedback controllers are instead useful to seek control of resource allocation and lower burden. Other approaches include genome reduction to increase the available resource pool and synthetic addiction to couple cell fitness and product accumulation. However, controlling the cellular response to exogenous expression is still a challenge, and more tools are needed to widen the applications of synthetic biology. Further effort that combines novel evolutionary data with burden-aware tools can set the foundation to increase the stability and robustness of future genetic systems.</p></div>\",\"PeriodicalId\":37400,\"journal\":{\"name\":\"Current Opinion in Systems Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2452310021000883/pdfft?md5=a6f739a545d3dbf5f04da061e5f75ff1&pid=1-s2.0-S2452310021000883-main.pdf\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Systems Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452310021000883\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452310021000883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Experimental tools to reduce the burden of bacterial synthetic biology
Cellular burden limits the applications of bacterial synthetic biology. Experimental approaches for burden minimisation have recently become available. Tools to identify construct design with low footprint on the host include capacity monitors that quantify cellular capacity, high-throughput approaches and cell-free systems for construct prototyping. Orthogonal ribosomes and feedback controllers are instead useful to seek control of resource allocation and lower burden. Other approaches include genome reduction to increase the available resource pool and synthetic addiction to couple cell fitness and product accumulation. However, controlling the cellular response to exogenous expression is still a challenge, and more tools are needed to widen the applications of synthetic biology. Further effort that combines novel evolutionary data with burden-aware tools can set the foundation to increase the stability and robustness of future genetic systems.
期刊介绍:
Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution