Wei Su, Yinshan Wu, Huijun Zheng, Xiuliu Guo, Binbin Feng, F. Guo
{"title":"mir -141修饰的骨髓间充质干细胞(BMSCs)抑制严重急性胰腺炎的进展","authors":"Wei Su, Yinshan Wu, Huijun Zheng, Xiuliu Guo, Binbin Feng, F. Guo","doi":"10.1166/jbt.2023.3190","DOIUrl":null,"url":null,"abstract":"The therapeutic effects of bone marrow mesenchymal stem cells (BMSCs) on severe acute pancreatitis (SAP) and miRNAs are currently the research hotspots. This study intends to explore the potential impact of miR-141-modified BMSCs on SAP. After establishment of rat model of SAP, the\n animals were grouped into control group, model group, BMSCs group, miR-141 group, positive control group, and PI3K/mTOR signaling agonist group (agonist group) followed by analysis of miR-141 expression by RT-qPCR and the expression of serum amylase, IL-6, TNF-α, TAP, PI3K, mTOR,\n and LC3-II by Western blot and ELISA. miR-141 was significantly up-regulated in the miR-141-modified BMSCs group (p > 0.05). The contents of serum amylase, IL-6, TNF-α, and TAP was increased in SAP rats and decreased after BMSC treatment (p > 0.05). The increased\n autophagy flux in the rats with SAT was reduced upon treatment with BMSCs and autophagy flux was decreased in miR-141 group but increased in positive control group. The model and positive control group presented highest expression of LC3-II, p-PI3K and p-mTOR, followed by BMSCs group and miR-141\n group (p < 0.05). In conclusion, miR-141-modified BMSCs decrease the phosphorylation of PI3K and mTOR to inhibit PI3K/mTOR signaling activity and downregulate LC3-II protein to inhibit autophagy, thereby ameliorating the development of SAP, indicating that miR-141 might be a therapeutic\n target for SAP.","PeriodicalId":15300,"journal":{"name":"Journal of Biomaterials and Tissue Engineering","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"miR-141-Modified Bone Marrow Mesenchymal Stem Cells (BMSCs) Inhibits the Progression of Severe Acute Pancreatitis\",\"authors\":\"Wei Su, Yinshan Wu, Huijun Zheng, Xiuliu Guo, Binbin Feng, F. Guo\",\"doi\":\"10.1166/jbt.2023.3190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The therapeutic effects of bone marrow mesenchymal stem cells (BMSCs) on severe acute pancreatitis (SAP) and miRNAs are currently the research hotspots. This study intends to explore the potential impact of miR-141-modified BMSCs on SAP. After establishment of rat model of SAP, the\\n animals were grouped into control group, model group, BMSCs group, miR-141 group, positive control group, and PI3K/mTOR signaling agonist group (agonist group) followed by analysis of miR-141 expression by RT-qPCR and the expression of serum amylase, IL-6, TNF-α, TAP, PI3K, mTOR,\\n and LC3-II by Western blot and ELISA. miR-141 was significantly up-regulated in the miR-141-modified BMSCs group (p > 0.05). The contents of serum amylase, IL-6, TNF-α, and TAP was increased in SAP rats and decreased after BMSC treatment (p > 0.05). The increased\\n autophagy flux in the rats with SAT was reduced upon treatment with BMSCs and autophagy flux was decreased in miR-141 group but increased in positive control group. The model and positive control group presented highest expression of LC3-II, p-PI3K and p-mTOR, followed by BMSCs group and miR-141\\n group (p < 0.05). In conclusion, miR-141-modified BMSCs decrease the phosphorylation of PI3K and mTOR to inhibit PI3K/mTOR signaling activity and downregulate LC3-II protein to inhibit autophagy, thereby ameliorating the development of SAP, indicating that miR-141 might be a therapeutic\\n target for SAP.\",\"PeriodicalId\":15300,\"journal\":{\"name\":\"Journal of Biomaterials and Tissue Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials and Tissue Engineering\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1166/jbt.2023.3190\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials and Tissue Engineering","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1166/jbt.2023.3190","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
miR-141-Modified Bone Marrow Mesenchymal Stem Cells (BMSCs) Inhibits the Progression of Severe Acute Pancreatitis
The therapeutic effects of bone marrow mesenchymal stem cells (BMSCs) on severe acute pancreatitis (SAP) and miRNAs are currently the research hotspots. This study intends to explore the potential impact of miR-141-modified BMSCs on SAP. After establishment of rat model of SAP, the
animals were grouped into control group, model group, BMSCs group, miR-141 group, positive control group, and PI3K/mTOR signaling agonist group (agonist group) followed by analysis of miR-141 expression by RT-qPCR and the expression of serum amylase, IL-6, TNF-α, TAP, PI3K, mTOR,
and LC3-II by Western blot and ELISA. miR-141 was significantly up-regulated in the miR-141-modified BMSCs group (p > 0.05). The contents of serum amylase, IL-6, TNF-α, and TAP was increased in SAP rats and decreased after BMSC treatment (p > 0.05). The increased
autophagy flux in the rats with SAT was reduced upon treatment with BMSCs and autophagy flux was decreased in miR-141 group but increased in positive control group. The model and positive control group presented highest expression of LC3-II, p-PI3K and p-mTOR, followed by BMSCs group and miR-141
group (p < 0.05). In conclusion, miR-141-modified BMSCs decrease the phosphorylation of PI3K and mTOR to inhibit PI3K/mTOR signaling activity and downregulate LC3-II protein to inhibit autophagy, thereby ameliorating the development of SAP, indicating that miR-141 might be a therapeutic
target for SAP.