{"title":"复反射群G(m,p,2)判别式的非交换分辨率","authors":"Simon May","doi":"10.1007/s10468-022-10193-8","DOIUrl":null,"url":null,"abstract":"<div><p>We show that for the family of complex reflection groups <i>G</i> = <i>G</i>(<i>m</i>, <i>p</i>,2) appearing in the Shephard–Todd classification, the endomorphism ring of the reduced hyperplane arrangement <i>A</i>(<i>G</i>) is a non-commutative resolution for the coordinate ring of the discriminant Δ of <i>G</i>. This furthers the work of Buchweitz, Faber and Ingalls who showed that this result holds for any true reflection group. In particular, we construct a matrix factorization for Δ from <i>A</i>(<i>G</i>) and decompose it using data from the irreducible representations of <i>G</i>. For <i>G</i>(<i>m</i>, <i>p</i>,2) we give a full decomposition of this matrix factorization, including for each irreducible representation a corresponding maximal Cohen–Macaulay module. The decomposition concludes that the endomorphism ring of the reduced hyperplane arrangement <i>A</i>(<i>G</i>) will be a non-commutative resolution. For the groups <i>G</i>(<i>m</i>,1,2), the coordinate rings of their respective discriminants are all isomorphic to each other. We also calculate and compare the Lusztig algebra for these groups.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10468-022-10193-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Non-Commutative Resolutions for the Discriminant of the Complex Reflection Group G(m, p, 2)\",\"authors\":\"Simon May\",\"doi\":\"10.1007/s10468-022-10193-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that for the family of complex reflection groups <i>G</i> = <i>G</i>(<i>m</i>, <i>p</i>,2) appearing in the Shephard–Todd classification, the endomorphism ring of the reduced hyperplane arrangement <i>A</i>(<i>G</i>) is a non-commutative resolution for the coordinate ring of the discriminant Δ of <i>G</i>. This furthers the work of Buchweitz, Faber and Ingalls who showed that this result holds for any true reflection group. In particular, we construct a matrix factorization for Δ from <i>A</i>(<i>G</i>) and decompose it using data from the irreducible representations of <i>G</i>. For <i>G</i>(<i>m</i>, <i>p</i>,2) we give a full decomposition of this matrix factorization, including for each irreducible representation a corresponding maximal Cohen–Macaulay module. The decomposition concludes that the endomorphism ring of the reduced hyperplane arrangement <i>A</i>(<i>G</i>) will be a non-commutative resolution. For the groups <i>G</i>(<i>m</i>,1,2), the coordinate rings of their respective discriminants are all isomorphic to each other. We also calculate and compare the Lusztig algebra for these groups.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10468-022-10193-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-022-10193-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-022-10193-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们证明,对于谢泼德-托德分类法中出现的复反射群 G = G(m,p,2)族,还原超平面排列 A(G)的内态环是 G 的判别式 Δ 的坐标环的非交换解析。对于 G(m,p,2),我们给出了该矩阵因式分解的完整分解,包括每个不可还原表示的相应最大科恩-麦考莱模块。分解的结论是,还原超平面排列 A(G) 的内构环将是一个非交换解析。对于群 G(m,1,2),它们各自判别式的坐标环都是同构的。我们还计算并比较了这些群的 Lusztig 代数。
Non-Commutative Resolutions for the Discriminant of the Complex Reflection Group G(m, p, 2)
We show that for the family of complex reflection groups G = G(m, p,2) appearing in the Shephard–Todd classification, the endomorphism ring of the reduced hyperplane arrangement A(G) is a non-commutative resolution for the coordinate ring of the discriminant Δ of G. This furthers the work of Buchweitz, Faber and Ingalls who showed that this result holds for any true reflection group. In particular, we construct a matrix factorization for Δ from A(G) and decompose it using data from the irreducible representations of G. For G(m, p,2) we give a full decomposition of this matrix factorization, including for each irreducible representation a corresponding maximal Cohen–Macaulay module. The decomposition concludes that the endomorphism ring of the reduced hyperplane arrangement A(G) will be a non-commutative resolution. For the groups G(m,1,2), the coordinate rings of their respective discriminants are all isomorphic to each other. We also calculate and compare the Lusztig algebra for these groups.