基斯利亚科夫乘数定理的变体

IF 1.1 2区 数学 Q1 MATHEMATICS
A. Defant, M. Mastyło, A. Pérez-Hernández
{"title":"基斯利亚科夫乘数定理的变体","authors":"A. Defant, M. Mastyło, A. Pérez-Hernández","doi":"10.1017/s1474748022000391","DOIUrl":null,"url":null,"abstract":"\n We prove stronger variants of a multiplier theorem of Kislyakov. The key ingredients are based on ideas of Kislyakov and the Kahane–Salem–Zygmund inequality. As a by-product, we show various multiplier theorems for spaces of trigonometric polynomials on the n-dimensional torus \n \n \n \n$\\mathbb {T}^n$\n\n \n or Boolean cubes \n \n \n \n$\\{-1,1\\}^N$\n\n \n . Our more abstract approach based on local Banach space theory has the advantage that it allows to consider more general compact abelian groups instead of only the multidimensional torus. As an application, we show that various recent \n \n \n \n$\\ell _1$\n\n \n -multiplier theorems for trigonometric polynomials in several variables or ordinary Dirichlet series may be proved without the Kahane–Salem–Zygmund inequality.","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VARIANTS OF A MULTIPLIER THEOREM OF KISLYAKOV\",\"authors\":\"A. Defant, M. Mastyło, A. Pérez-Hernández\",\"doi\":\"10.1017/s1474748022000391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We prove stronger variants of a multiplier theorem of Kislyakov. The key ingredients are based on ideas of Kislyakov and the Kahane–Salem–Zygmund inequality. As a by-product, we show various multiplier theorems for spaces of trigonometric polynomials on the n-dimensional torus \\n \\n \\n \\n$\\\\mathbb {T}^n$\\n\\n \\n or Boolean cubes \\n \\n \\n \\n$\\\\{-1,1\\\\}^N$\\n\\n \\n . Our more abstract approach based on local Banach space theory has the advantage that it allows to consider more general compact abelian groups instead of only the multidimensional torus. As an application, we show that various recent \\n \\n \\n \\n$\\\\ell _1$\\n\\n \\n -multiplier theorems for trigonometric polynomials in several variables or ordinary Dirichlet series may be proved without the Kahane–Salem–Zygmund inequality.\",\"PeriodicalId\":50002,\"journal\":{\"name\":\"Journal of the Institute of Mathematics of Jussieu\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Institute of Mathematics of Jussieu\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s1474748022000391\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Institute of Mathematics of Jussieu","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1474748022000391","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了Kislyakov的一个乘数定理的更强变体。关键因素基于Kislyakov和Kahane–Salem–Zygmund不等式的思想。作为副产品,我们给出了n维环面$\mathbb{T}^n$或布尔立方体$\{-1,1}^n$上三角多项式空间的各种乘法器定理。我们基于局部Banach空间理论的更抽象的方法的优点是,它允许考虑更一般的紧致阿贝尔群,而不仅仅是多维环面。作为一个应用,我们证明了在没有Kahane–Salem–Zygmund不等式的情况下,可以证明最近几个变量或普通Dirichlet级数中三角多项式的$\ell_1$-乘子定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
VARIANTS OF A MULTIPLIER THEOREM OF KISLYAKOV
We prove stronger variants of a multiplier theorem of Kislyakov. The key ingredients are based on ideas of Kislyakov and the Kahane–Salem–Zygmund inequality. As a by-product, we show various multiplier theorems for spaces of trigonometric polynomials on the n-dimensional torus $\mathbb {T}^n$ or Boolean cubes $\{-1,1\}^N$ . Our more abstract approach based on local Banach space theory has the advantage that it allows to consider more general compact abelian groups instead of only the multidimensional torus. As an application, we show that various recent $\ell _1$ -multiplier theorems for trigonometric polynomials in several variables or ordinary Dirichlet series may be proved without the Kahane–Salem–Zygmund inequality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
54
审稿时长
>12 weeks
期刊介绍: The Journal of the Institute of Mathematics of Jussieu publishes original research papers in any branch of pure mathematics; papers in logic and applied mathematics will also be considered, particularly when they have direct connections with pure mathematics. Its policy is to feature a wide variety of research areas and it welcomes the submission of papers from all parts of the world. Selection for publication is on the basis of reports from specialist referees commissioned by the Editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信