Chunze Zhang, Tao Li, Ji Hou, Qin Zhou, Wanwan Meng, Qian Ma, Peiyi Peng
{"title":"用半隐式外力加权提高浸入式边界-晶格Boltzmann耦合格式的稳定性","authors":"Chunze Zhang, Tao Li, Ji Hou, Qin Zhou, Wanwan Meng, Qian Ma, Peiyi Peng","doi":"10.3390/app13189995","DOIUrl":null,"url":null,"abstract":"The immersed boundary–lattice Boltzmann (IB-LB) coupling scheme is known as an efficient scheme for fluid–structure interactions (FSIs). However, the conventional IB-LB schemes suffer from instability because they involve a high-Reynolds-number flow or a larger stiffness structure. An averagely weighted iteration approach is presented to improve the stability restriction in this paper. This new approach, which improves the stability by mitigating the high-frequency fluctuations, is implemented by iteratively calculating the external force, and averagely weighting the force obtained at every iterative step. Five cases are simulated to verify the accuracy and effectiveness of the present approach. Under the premise of maintaining the accuracy of the conventional IB-LB method, the implementation of the present approach can significantly enhance the numerical stability. Compared with the conventional IB-LB method, the present approach can significantly expand the material parameter range for simulation; in particular, this approach qualitatively improves the upper limit of the bending rigidity coefficient by approximately 8000 times. To use the outstanding stability of the present approach, the IB inertia force can be directly incorporated into the simulation. In addition, under the low-viscosity condition, the present approach can effectively simulate the large-deformation FSI problem.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability Improvement of the Immersed Boundary–Lattice Boltzmann Coupling Scheme by Semi-Implicit Weighting of External Force\",\"authors\":\"Chunze Zhang, Tao Li, Ji Hou, Qin Zhou, Wanwan Meng, Qian Ma, Peiyi Peng\",\"doi\":\"10.3390/app13189995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The immersed boundary–lattice Boltzmann (IB-LB) coupling scheme is known as an efficient scheme for fluid–structure interactions (FSIs). However, the conventional IB-LB schemes suffer from instability because they involve a high-Reynolds-number flow or a larger stiffness structure. An averagely weighted iteration approach is presented to improve the stability restriction in this paper. This new approach, which improves the stability by mitigating the high-frequency fluctuations, is implemented by iteratively calculating the external force, and averagely weighting the force obtained at every iterative step. Five cases are simulated to verify the accuracy and effectiveness of the present approach. Under the premise of maintaining the accuracy of the conventional IB-LB method, the implementation of the present approach can significantly enhance the numerical stability. Compared with the conventional IB-LB method, the present approach can significantly expand the material parameter range for simulation; in particular, this approach qualitatively improves the upper limit of the bending rigidity coefficient by approximately 8000 times. To use the outstanding stability of the present approach, the IB inertia force can be directly incorporated into the simulation. In addition, under the low-viscosity condition, the present approach can effectively simulate the large-deformation FSI problem.\",\"PeriodicalId\":48760,\"journal\":{\"name\":\"Applied Sciences-Basel\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Sciences-Basel\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/app13189995\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Sciences-Basel","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/app13189995","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Stability Improvement of the Immersed Boundary–Lattice Boltzmann Coupling Scheme by Semi-Implicit Weighting of External Force
The immersed boundary–lattice Boltzmann (IB-LB) coupling scheme is known as an efficient scheme for fluid–structure interactions (FSIs). However, the conventional IB-LB schemes suffer from instability because they involve a high-Reynolds-number flow or a larger stiffness structure. An averagely weighted iteration approach is presented to improve the stability restriction in this paper. This new approach, which improves the stability by mitigating the high-frequency fluctuations, is implemented by iteratively calculating the external force, and averagely weighting the force obtained at every iterative step. Five cases are simulated to verify the accuracy and effectiveness of the present approach. Under the premise of maintaining the accuracy of the conventional IB-LB method, the implementation of the present approach can significantly enhance the numerical stability. Compared with the conventional IB-LB method, the present approach can significantly expand the material parameter range for simulation; in particular, this approach qualitatively improves the upper limit of the bending rigidity coefficient by approximately 8000 times. To use the outstanding stability of the present approach, the IB inertia force can be directly incorporated into the simulation. In addition, under the low-viscosity condition, the present approach can effectively simulate the large-deformation FSI problem.
期刊介绍:
Applied Sciences (ISSN 2076-3417) provides an advanced forum on all aspects of applied natural sciences. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.