{"title":"数字光处理制备氧化锆陶瓷牙冠:工艺对物理性能和微观结构的影响","authors":"Faqiang Zhang, Yangbo Zuo, Kesheng Zhang, Hairui Gao, Shupei Zhang, Haishen Chen, Guangwang Liu, Xia Jin, Jingzhou Yang","doi":"10.1089/3dp.2022.0342","DOIUrl":null,"url":null,"abstract":"<p><p>Highly dense zirconia ceramic dental crowns were successfully fabricated by a digital light processing (DLP) additive manufacturing technique. The effects of slurry solid content and exposure density on printing accuracy, curing depth, shrinkage rate, and relative density were evaluated. For the slurry with a solid content of 80 wt%, the curing depth achieved 40 μm with minimal overgrowth under an exposure intensity of 16.5 mW/cm<sup>2</sup>. Solid content and sintering temperature had remarkable effects on physical properties and microstructure. Higher solid content resulted in better structural integrity, higher relative density, and denser microstructure. Compressive strength, Vickers hardness, fracture toughness, and wear resistance significantly increase with lifting solid content, reaching values of 677 MPa, 12.62 GPa, 6.3 MPa·m<sup>1/2</sup>, and 1.5 mg/min, respectively, for 1500°C sintered zirconia dental crowns printed from a slurry with 80 wt% solid content. DLP is deemed a promising technology for the fabrication of zirconia ceramic dental crowns for tooth repair.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442358/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fabrication of Zirconia Ceramic Dental Crowns by Digital Light Processing: Effects of the Process on Physical Properties and Microstructure.\",\"authors\":\"Faqiang Zhang, Yangbo Zuo, Kesheng Zhang, Hairui Gao, Shupei Zhang, Haishen Chen, Guangwang Liu, Xia Jin, Jingzhou Yang\",\"doi\":\"10.1089/3dp.2022.0342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Highly dense zirconia ceramic dental crowns were successfully fabricated by a digital light processing (DLP) additive manufacturing technique. The effects of slurry solid content and exposure density on printing accuracy, curing depth, shrinkage rate, and relative density were evaluated. For the slurry with a solid content of 80 wt%, the curing depth achieved 40 μm with minimal overgrowth under an exposure intensity of 16.5 mW/cm<sup>2</sup>. Solid content and sintering temperature had remarkable effects on physical properties and microstructure. Higher solid content resulted in better structural integrity, higher relative density, and denser microstructure. Compressive strength, Vickers hardness, fracture toughness, and wear resistance significantly increase with lifting solid content, reaching values of 677 MPa, 12.62 GPa, 6.3 MPa·m<sup>1/2</sup>, and 1.5 mg/min, respectively, for 1500°C sintered zirconia dental crowns printed from a slurry with 80 wt% solid content. DLP is deemed a promising technology for the fabrication of zirconia ceramic dental crowns for tooth repair.</p>\",\"PeriodicalId\":54341,\"journal\":{\"name\":\"3D Printing and Additive Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442358/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3D Printing and Additive Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1089/3dp.2022.0342\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2022.0342","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Fabrication of Zirconia Ceramic Dental Crowns by Digital Light Processing: Effects of the Process on Physical Properties and Microstructure.
Highly dense zirconia ceramic dental crowns were successfully fabricated by a digital light processing (DLP) additive manufacturing technique. The effects of slurry solid content and exposure density on printing accuracy, curing depth, shrinkage rate, and relative density were evaluated. For the slurry with a solid content of 80 wt%, the curing depth achieved 40 μm with minimal overgrowth under an exposure intensity of 16.5 mW/cm2. Solid content and sintering temperature had remarkable effects on physical properties and microstructure. Higher solid content resulted in better structural integrity, higher relative density, and denser microstructure. Compressive strength, Vickers hardness, fracture toughness, and wear resistance significantly increase with lifting solid content, reaching values of 677 MPa, 12.62 GPa, 6.3 MPa·m1/2, and 1.5 mg/min, respectively, for 1500°C sintered zirconia dental crowns printed from a slurry with 80 wt% solid content. DLP is deemed a promising technology for the fabrication of zirconia ceramic dental crowns for tooth repair.
期刊介绍:
3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged.
The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.