N. D. Chichirova, A. A. Filimonova, S. M. Vlasov, O. E. Babikov
{"title":"TPP中工艺设备及化学脱盐水处理厂的生物污染(综述)","authors":"N. D. Chichirova, A. A. Filimonova, S. M. Vlasov, O. E. Babikov","doi":"10.1134/S0040601523090021","DOIUrl":null,"url":null,"abstract":"<p>At thermal power plants, installations in contact with the water coolant are subject to biological contamination. This is due to a number of factors: the maintenance of favorable temperature regimes, the formation of stagnant zones, the constant supply of nutrients, the presence of large areas of equipment surfaces (pipelines, water storage tanks, the pipe surface of the condenser), the presence of various materials (ion-exchange resins, membranes), and changing climatic conditions. The fight against the formation of such pollution of thermal power equipment is very relevant today, although almost all TPPs carry out thorough preparation of additional and feed water. It should be noted that the control of the concentration of organic impurities in the liquid and vapor phases, as well as continuous monitoring, are rather laborious processes. Organic deposits and the presence of biofilms on the process equipment of circulating cooling systems (CCS), water treatment plants (WTP), and chemically treated water storage tanks lead to various production failures, emergencies, and a general decrease in the efficiency of heat and electricity generation. In this paper, foreign and domestic studies on the features of the formation and development of biofilms were reviewed. Current methods for detecting and assessing biological pollution are considered and traditional chemical, physical, electrochemical, acoustic, electromagnetic, and other methods of combating microorganisms and bacteria are described. It has been shown that the growth of bacteria significantly complicates the equipment-cleaning procedures and accelerates the process of scale formation. To effectively solve the problems of biological deposits, the development of methods for monitoring and controlling the formation of bacterial deposits, the preparation of additional water, and the maintenance of a water-chemical regime must be carried out differentially based on the identification of colonies of microorganisms using test systems. The previous works of the team of authors concerning the issues of pollution of the coolant of circulating cooling systems and water treatment plants at TPPs of the Republic of Tatarstan in the period from 2009 to 2022 are noted.</p>","PeriodicalId":799,"journal":{"name":"Thermal Engineering","volume":"70 9","pages":"665 - 672"},"PeriodicalIF":0.9000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biological Pollution of Technological Equipment and the Chemically Desalting Water Treatment Plant at a TPP (Review)\",\"authors\":\"N. D. Chichirova, A. A. Filimonova, S. M. Vlasov, O. E. Babikov\",\"doi\":\"10.1134/S0040601523090021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>At thermal power plants, installations in contact with the water coolant are subject to biological contamination. This is due to a number of factors: the maintenance of favorable temperature regimes, the formation of stagnant zones, the constant supply of nutrients, the presence of large areas of equipment surfaces (pipelines, water storage tanks, the pipe surface of the condenser), the presence of various materials (ion-exchange resins, membranes), and changing climatic conditions. The fight against the formation of such pollution of thermal power equipment is very relevant today, although almost all TPPs carry out thorough preparation of additional and feed water. It should be noted that the control of the concentration of organic impurities in the liquid and vapor phases, as well as continuous monitoring, are rather laborious processes. Organic deposits and the presence of biofilms on the process equipment of circulating cooling systems (CCS), water treatment plants (WTP), and chemically treated water storage tanks lead to various production failures, emergencies, and a general decrease in the efficiency of heat and electricity generation. In this paper, foreign and domestic studies on the features of the formation and development of biofilms were reviewed. Current methods for detecting and assessing biological pollution are considered and traditional chemical, physical, electrochemical, acoustic, electromagnetic, and other methods of combating microorganisms and bacteria are described. It has been shown that the growth of bacteria significantly complicates the equipment-cleaning procedures and accelerates the process of scale formation. To effectively solve the problems of biological deposits, the development of methods for monitoring and controlling the formation of bacterial deposits, the preparation of additional water, and the maintenance of a water-chemical regime must be carried out differentially based on the identification of colonies of microorganisms using test systems. The previous works of the team of authors concerning the issues of pollution of the coolant of circulating cooling systems and water treatment plants at TPPs of the Republic of Tatarstan in the period from 2009 to 2022 are noted.</p>\",\"PeriodicalId\":799,\"journal\":{\"name\":\"Thermal Engineering\",\"volume\":\"70 9\",\"pages\":\"665 - 672\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermal Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040601523090021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S0040601523090021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Biological Pollution of Technological Equipment and the Chemically Desalting Water Treatment Plant at a TPP (Review)
At thermal power plants, installations in contact with the water coolant are subject to biological contamination. This is due to a number of factors: the maintenance of favorable temperature regimes, the formation of stagnant zones, the constant supply of nutrients, the presence of large areas of equipment surfaces (pipelines, water storage tanks, the pipe surface of the condenser), the presence of various materials (ion-exchange resins, membranes), and changing climatic conditions. The fight against the formation of such pollution of thermal power equipment is very relevant today, although almost all TPPs carry out thorough preparation of additional and feed water. It should be noted that the control of the concentration of organic impurities in the liquid and vapor phases, as well as continuous monitoring, are rather laborious processes. Organic deposits and the presence of biofilms on the process equipment of circulating cooling systems (CCS), water treatment plants (WTP), and chemically treated water storage tanks lead to various production failures, emergencies, and a general decrease in the efficiency of heat and electricity generation. In this paper, foreign and domestic studies on the features of the formation and development of biofilms were reviewed. Current methods for detecting and assessing biological pollution are considered and traditional chemical, physical, electrochemical, acoustic, electromagnetic, and other methods of combating microorganisms and bacteria are described. It has been shown that the growth of bacteria significantly complicates the equipment-cleaning procedures and accelerates the process of scale formation. To effectively solve the problems of biological deposits, the development of methods for monitoring and controlling the formation of bacterial deposits, the preparation of additional water, and the maintenance of a water-chemical regime must be carried out differentially based on the identification of colonies of microorganisms using test systems. The previous works of the team of authors concerning the issues of pollution of the coolant of circulating cooling systems and water treatment plants at TPPs of the Republic of Tatarstan in the period from 2009 to 2022 are noted.