Qin Chen, Renato Macciotta, Lixia Chen, Kunlong Yin, Lei Gui, Ye Li
{"title":"基于物理模型和现场观测,提出了缓动滑坡中砌体建筑易损性评价模型","authors":"Qin Chen, Renato Macciotta, Lixia Chen, Kunlong Yin, Lei Gui, Ye Li","doi":"10.1007/s10064-023-03385-z","DOIUrl":null,"url":null,"abstract":"<div><p>The collection of relevant information about the vulnerability of infrastructure damaged by landslides is not an easy task due to the existence of several compounding factors and uncertainties. This makes it difficult to quantitatively estimate their vulnerability to slow-moving landslides. This paper presents a new vulnerability assessment model for masonry buildings on slow-moving landslides based on physical models and field observations. A masonry building model is made of brick and concrete at a scale of 1:10 to physically simulate the damage in structures caused by ground tension cracks commonly developed on slow-moving landslides. The tension crack opening process is simulated through a load-controlled table with an aperture on which the building model is constructed. The strain on the wall and its foundation were measured, and the damage of the model (crack formation and evolution for each loading step) was collected, described, and analyzed. These data were used to develop failure criteria for masonry buildings in rural areas in China in terms of a quantitative vulnerability curve. The quantitative model of vulnerability for masonry structures was established based on fuzzy mathematics and the Weibull function applied on the test data and observations. The vulnerability curve is verified with field cases of masonry buildings damaged by ground tension cracks associated with slow-moving landslides in the Three Gorges Reservoir area. The results support further testing and use of vulnerability curve proposed.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"82 10","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proposed vulnerability assessment model for masonry buildings on slow-moving landslides based on physical models and field observations\",\"authors\":\"Qin Chen, Renato Macciotta, Lixia Chen, Kunlong Yin, Lei Gui, Ye Li\",\"doi\":\"10.1007/s10064-023-03385-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The collection of relevant information about the vulnerability of infrastructure damaged by landslides is not an easy task due to the existence of several compounding factors and uncertainties. This makes it difficult to quantitatively estimate their vulnerability to slow-moving landslides. This paper presents a new vulnerability assessment model for masonry buildings on slow-moving landslides based on physical models and field observations. A masonry building model is made of brick and concrete at a scale of 1:10 to physically simulate the damage in structures caused by ground tension cracks commonly developed on slow-moving landslides. The tension crack opening process is simulated through a load-controlled table with an aperture on which the building model is constructed. The strain on the wall and its foundation were measured, and the damage of the model (crack formation and evolution for each loading step) was collected, described, and analyzed. These data were used to develop failure criteria for masonry buildings in rural areas in China in terms of a quantitative vulnerability curve. The quantitative model of vulnerability for masonry structures was established based on fuzzy mathematics and the Weibull function applied on the test data and observations. The vulnerability curve is verified with field cases of masonry buildings damaged by ground tension cracks associated with slow-moving landslides in the Three Gorges Reservoir area. The results support further testing and use of vulnerability curve proposed.</p></div>\",\"PeriodicalId\":500,\"journal\":{\"name\":\"Bulletin of Engineering Geology and the Environment\",\"volume\":\"82 10\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Engineering Geology and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10064-023-03385-z\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-023-03385-z","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Proposed vulnerability assessment model for masonry buildings on slow-moving landslides based on physical models and field observations
The collection of relevant information about the vulnerability of infrastructure damaged by landslides is not an easy task due to the existence of several compounding factors and uncertainties. This makes it difficult to quantitatively estimate their vulnerability to slow-moving landslides. This paper presents a new vulnerability assessment model for masonry buildings on slow-moving landslides based on physical models and field observations. A masonry building model is made of brick and concrete at a scale of 1:10 to physically simulate the damage in structures caused by ground tension cracks commonly developed on slow-moving landslides. The tension crack opening process is simulated through a load-controlled table with an aperture on which the building model is constructed. The strain on the wall and its foundation were measured, and the damage of the model (crack formation and evolution for each loading step) was collected, described, and analyzed. These data were used to develop failure criteria for masonry buildings in rural areas in China in terms of a quantitative vulnerability curve. The quantitative model of vulnerability for masonry structures was established based on fuzzy mathematics and the Weibull function applied on the test data and observations. The vulnerability curve is verified with field cases of masonry buildings damaged by ground tension cracks associated with slow-moving landslides in the Three Gorges Reservoir area. The results support further testing and use of vulnerability curve proposed.
期刊介绍:
Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces:
• the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations;
• the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change;
• the assessment of the mechanical and hydrological behaviour of soil and rock masses;
• the prediction of changes to the above properties with time;
• the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.