熔丝制造过程循环加热的有限差分建模与实验研究

IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING
3D Printing and Additive Manufacturing Pub Date : 2024-06-18 eCollection Date: 2024-06-01 DOI:10.1089/3dp.2022.0282
Luca Luberto, Volker Böß, Kristin M de Payrebrune
{"title":"熔丝制造过程循环加热的有限差分建模与实验研究","authors":"Luca Luberto, Volker Böß, Kristin M de Payrebrune","doi":"10.1089/3dp.2022.0282","DOIUrl":null,"url":null,"abstract":"<p><p>Fused filament fabrication (FFF) is one of the most popular additive manufacturing (AM) processes due to its simplicity and low initial and maintenance costs. However, good printing results such as high dimensionality, avoidance of cooling cracks, and warping are directly related to heat control in the process and require precise settings of printing parameters. Therefore, accurate prediction and understanding of temperature peaks and cooling behavior in a local area and in a larger part are important in FFF, as in other AM processes. To analyze the temperature peaks and cooling behavior, we simulated the heat distribution, including convective heat transfer, in a cuboid sample. The model uses the finite difference method (FDM), which is advantageous for parallel computing on graphics processing units and makes temperature simulations also of larger parts feasible. After the verification process, we validate the simulation with an <i>in situ</i> measurement during FFF printing. We conclude the process simulation with a parameter study in which we vary the function of the heat transfer coefficient and part size. For smaller parts, we found that the print bed temperature is crucial for the temperature gradient. The approximations of the heat transfer process play only a secondary role. For larger components, the opposite effect can be observed. The description of heat transfer plays a decisive role for the heat distribution in the component, whereas the bed temperature determines the temperature distribution only in the immediate vicinity of the bed. The developed FFF process model thus provides a good basis for further investigations and can be easily extended by additional effects or transferred to other AM processes.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442153/pdf/","citationCount":"0","resultStr":"{\"title\":\"Finite Difference Modeling and Experimental Investigation of Cyclic Thermal Heating in the Fused Filament Fabrication Process.\",\"authors\":\"Luca Luberto, Volker Böß, Kristin M de Payrebrune\",\"doi\":\"10.1089/3dp.2022.0282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fused filament fabrication (FFF) is one of the most popular additive manufacturing (AM) processes due to its simplicity and low initial and maintenance costs. However, good printing results such as high dimensionality, avoidance of cooling cracks, and warping are directly related to heat control in the process and require precise settings of printing parameters. Therefore, accurate prediction and understanding of temperature peaks and cooling behavior in a local area and in a larger part are important in FFF, as in other AM processes. To analyze the temperature peaks and cooling behavior, we simulated the heat distribution, including convective heat transfer, in a cuboid sample. The model uses the finite difference method (FDM), which is advantageous for parallel computing on graphics processing units and makes temperature simulations also of larger parts feasible. After the verification process, we validate the simulation with an <i>in situ</i> measurement during FFF printing. We conclude the process simulation with a parameter study in which we vary the function of the heat transfer coefficient and part size. For smaller parts, we found that the print bed temperature is crucial for the temperature gradient. The approximations of the heat transfer process play only a secondary role. For larger components, the opposite effect can be observed. The description of heat transfer plays a decisive role for the heat distribution in the component, whereas the bed temperature determines the temperature distribution only in the immediate vicinity of the bed. The developed FFF process model thus provides a good basis for further investigations and can be easily extended by additional effects or transferred to other AM processes.</p>\",\"PeriodicalId\":54341,\"journal\":{\"name\":\"3D Printing and Additive Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442153/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3D Printing and Additive Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1089/3dp.2022.0282\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2022.0282","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

熔融长丝制造(FFF)是最流行的增材制造(AM)工艺之一,因为它操作简单、初始成本和维护成本低。然而,良好的打印效果(如高尺寸、避免冷却裂纹和翘曲)与工艺中的热量控制直接相关,需要对打印参数进行精确设置。因此,准确预测和理解局部区域和更大范围内的温度峰值和冷却行为对 FFF 和其他 AM 工艺都很重要。为了分析温度峰值和冷却行为,我们模拟了立方体样品中的热分布,包括对流传热。该模型采用了有限差分法(FDM),这种方法有利于在图形处理器上进行并行计算,使较大零件的温度模拟也变得可行。验证过程结束后,我们通过 FFF 印刷过程中的现场测量对模拟进行了验证。最后,我们进行了参数研究,改变了传热系数和零件尺寸的函数,从而结束了过程模拟。对于较小的零件,我们发现打印床温度对温度梯度至关重要。热传导过程的近似值仅起次要作用。对于较大的部件,则可以观察到相反的效果。热传导的描述对部件中的热量分布起着决定性作用,而床层温度只决定床层附近的温度分布。因此,所开发的 FFF 工艺模型为进一步研究提供了良好的基础,并可通过附加效应轻松扩展或转移到其他 AM 工艺中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite Difference Modeling and Experimental Investigation of Cyclic Thermal Heating in the Fused Filament Fabrication Process.

Fused filament fabrication (FFF) is one of the most popular additive manufacturing (AM) processes due to its simplicity and low initial and maintenance costs. However, good printing results such as high dimensionality, avoidance of cooling cracks, and warping are directly related to heat control in the process and require precise settings of printing parameters. Therefore, accurate prediction and understanding of temperature peaks and cooling behavior in a local area and in a larger part are important in FFF, as in other AM processes. To analyze the temperature peaks and cooling behavior, we simulated the heat distribution, including convective heat transfer, in a cuboid sample. The model uses the finite difference method (FDM), which is advantageous for parallel computing on graphics processing units and makes temperature simulations also of larger parts feasible. After the verification process, we validate the simulation with an in situ measurement during FFF printing. We conclude the process simulation with a parameter study in which we vary the function of the heat transfer coefficient and part size. For smaller parts, we found that the print bed temperature is crucial for the temperature gradient. The approximations of the heat transfer process play only a secondary role. For larger components, the opposite effect can be observed. The description of heat transfer plays a decisive role for the heat distribution in the component, whereas the bed temperature determines the temperature distribution only in the immediate vicinity of the bed. The developed FFF process model thus provides a good basis for further investigations and can be easily extended by additional effects or transferred to other AM processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
3D Printing and Additive Manufacturing
3D Printing and Additive Manufacturing Materials Science-Materials Science (miscellaneous)
CiteScore
6.00
自引率
6.50%
发文量
126
期刊介绍: 3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged. The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信