PhysiCOOL:modeLing项目模型校准和优化的通用框架

Inês G. Gonçalves, D. Hormuth, Sandhya Prabhakaran, C. Phillips, J. García-Aznar
{"title":"PhysiCOOL:modeLing项目模型校准和优化的通用框架","authors":"Inês G. Gonçalves, D. Hormuth, Sandhya Prabhakaran, C. Phillips, J. García-Aznar","doi":"10.1101/2022.11.17.516671","DOIUrl":null,"url":null,"abstract":"In silico models of biological systems are usually very complex and rely on several parameters describing physical and biological properties that require validation. As such, parameter space exploration is an essential component of computational model development to fully characterize and validate simulation results. Experimental data may also be used to constrain parameter space (or enable model calibration) to enhance the biological relevance of model parameters. One widely used computational platform in the mathematical biology community is PhysiCell which provides a standardized approach to agent-based models of biological phenomena at different time and spatial scales. Nonetheless, one limitation of PhysiCell is that there has not been a generalized approach for parameter space exploration and calibration that can be run without high-performance computing access. Taking this into account, we present PhysiCOOL, an open-source Python library tailored to create standardized calibration and optimization routines of PhysiCell models. Graphical abstract","PeriodicalId":73157,"journal":{"name":"GigaByte (Hong Kong, China)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"PhysiCOOL: A generalized framework for model Calibration and Optimization Of modeLing projects\",\"authors\":\"Inês G. Gonçalves, D. Hormuth, Sandhya Prabhakaran, C. Phillips, J. García-Aznar\",\"doi\":\"10.1101/2022.11.17.516671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In silico models of biological systems are usually very complex and rely on several parameters describing physical and biological properties that require validation. As such, parameter space exploration is an essential component of computational model development to fully characterize and validate simulation results. Experimental data may also be used to constrain parameter space (or enable model calibration) to enhance the biological relevance of model parameters. One widely used computational platform in the mathematical biology community is PhysiCell which provides a standardized approach to agent-based models of biological phenomena at different time and spatial scales. Nonetheless, one limitation of PhysiCell is that there has not been a generalized approach for parameter space exploration and calibration that can be run without high-performance computing access. Taking this into account, we present PhysiCOOL, an open-source Python library tailored to create standardized calibration and optimization routines of PhysiCell models. Graphical abstract\",\"PeriodicalId\":73157,\"journal\":{\"name\":\"GigaByte (Hong Kong, China)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GigaByte (Hong Kong, China)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2022.11.17.516671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaByte (Hong Kong, China)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2022.11.17.516671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

生物系统的计算机模型通常非常复杂,并且依赖于描述需要验证的物理和生物特性的几个参数。因此,参数空间探索是计算模型开发的重要组成部分,以充分表征和验证模拟结果。实验数据也可用于约束参数空间(或实现模型校准),以增强模型参数的生物学相关性。数学生物学界广泛使用的一个计算平台是PhysiCell,它为不同时间和空间尺度的生物现象的基于主体的模型提供了一种标准化方法。尽管如此,PhysiCell的一个局限性是,还没有一种用于参数空间探索和校准的通用方法,可以在没有高性能计算访问的情况下运行。考虑到这一点,我们推出了PhysiCOOL,这是一个开源Python库,专门用于创建PhysiCell模型的标准化校准和优化例程。图形摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PhysiCOOL: A generalized framework for model Calibration and Optimization Of modeLing projects
In silico models of biological systems are usually very complex and rely on several parameters describing physical and biological properties that require validation. As such, parameter space exploration is an essential component of computational model development to fully characterize and validate simulation results. Experimental data may also be used to constrain parameter space (or enable model calibration) to enhance the biological relevance of model parameters. One widely used computational platform in the mathematical biology community is PhysiCell which provides a standardized approach to agent-based models of biological phenomena at different time and spatial scales. Nonetheless, one limitation of PhysiCell is that there has not been a generalized approach for parameter space exploration and calibration that can be run without high-performance computing access. Taking this into account, we present PhysiCOOL, an open-source Python library tailored to create standardized calibration and optimization routines of PhysiCell models. Graphical abstract
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信