基于交变磁体阵列的电力设备振动能量收集技术研究

IF 4.4 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
High Voltage Pub Date : 2023-08-31 DOI:10.1049/hve2.12367
Pinlei Lv, Chengyu Fan, Aijun Yang, Huan Yuan, Jifeng Chu, Mingzhe Rong, Xiaohua Wang
{"title":"基于交变磁体阵列的电力设备振动能量收集技术研究","authors":"Pinlei Lv,&nbsp;Chengyu Fan,&nbsp;Aijun Yang,&nbsp;Huan Yuan,&nbsp;Jifeng Chu,&nbsp;Mingzhe Rong,&nbsp;Xiaohua Wang","doi":"10.1049/hve2.12367","DOIUrl":null,"url":null,"abstract":"<p>Vibration with a frequency of 100 Hz is widely distributed in the power equipment, and it can provide a new way to supply energy for sensors by vibration energy harvesting. The vibration energy harvesting method based on electromagnetic induction principle was studied through the arrayed structure of magnets and coils. Static magnetic field models were established for four magnet array structures and it was found that the alternating magnet array has the largest magnetic flux and magnetic flux gradient. Based on the alternating magnet array, prototypes of energy harvester with vertical and parallel movement mode were proposed. Through structural parameter optimisation analysis, two different energy harvesters were fabricated and it was found that the energy harvester with a parallel movement mode has better output performances. The energy harvester could provide output voltage/current and power of 8.35 V/17.39 mA and 15.13 mW (matched resistance is 200 Ω) at an acceleration of 5 m·s<sup>−2</sup>. The 100 mF capacitor could be charged to 2.72 V within 300 s, and the final voltage of the capacitor is greater than 3 V, which could sustainably drive commercial wireless temperature/humidity sensors.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.12367","citationCount":"0","resultStr":"{\"title\":\"Research on vibration energy harvesting technology of power equipment based on alternating magnet array\",\"authors\":\"Pinlei Lv,&nbsp;Chengyu Fan,&nbsp;Aijun Yang,&nbsp;Huan Yuan,&nbsp;Jifeng Chu,&nbsp;Mingzhe Rong,&nbsp;Xiaohua Wang\",\"doi\":\"10.1049/hve2.12367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Vibration with a frequency of 100 Hz is widely distributed in the power equipment, and it can provide a new way to supply energy for sensors by vibration energy harvesting. The vibration energy harvesting method based on electromagnetic induction principle was studied through the arrayed structure of magnets and coils. Static magnetic field models were established for four magnet array structures and it was found that the alternating magnet array has the largest magnetic flux and magnetic flux gradient. Based on the alternating magnet array, prototypes of energy harvester with vertical and parallel movement mode were proposed. Through structural parameter optimisation analysis, two different energy harvesters were fabricated and it was found that the energy harvester with a parallel movement mode has better output performances. The energy harvester could provide output voltage/current and power of 8.35 V/17.39 mA and 15.13 mW (matched resistance is 200 Ω) at an acceleration of 5 m·s<sup>−2</sup>. The 100 mF capacitor could be charged to 2.72 V within 300 s, and the final voltage of the capacitor is greater than 3 V, which could sustainably drive commercial wireless temperature/humidity sensors.</p>\",\"PeriodicalId\":48649,\"journal\":{\"name\":\"High Voltage\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.12367\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Voltage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/hve2.12367\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/hve2.12367","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

100Hz频率的振动广泛分布在电力设备中,它可以通过振动能量采集为传感器提供一种新的能量供应方式。通过磁体和线圈的阵列结构,研究了基于电磁感应原理的振动能量采集方法。建立了四种磁体阵列结构的静态磁场模型,发现交变磁体阵列具有最大的磁通量和磁通梯度。基于交变磁体阵列,提出了具有垂直和平行运动模式的能量采集器原型。通过结构参数优化分析,制作了两种不同的能量采集器,发现平行运动模式的能量采集器具有更好的输出性能。能量采集器在5 m·s−2的加速度下可提供8.35 V/17.39 mA和15.13 mW的输出电压/电流和功率(匹配电阻为200Ω)。100mF电容器可以在300秒内充电至2.72V,电容器的最终电压大于3V,这可以可持续地驱动商用无线温度/湿度传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Research on vibration energy harvesting technology of power equipment based on alternating magnet array

Research on vibration energy harvesting technology of power equipment based on alternating magnet array

Vibration with a frequency of 100 Hz is widely distributed in the power equipment, and it can provide a new way to supply energy for sensors by vibration energy harvesting. The vibration energy harvesting method based on electromagnetic induction principle was studied through the arrayed structure of magnets and coils. Static magnetic field models were established for four magnet array structures and it was found that the alternating magnet array has the largest magnetic flux and magnetic flux gradient. Based on the alternating magnet array, prototypes of energy harvester with vertical and parallel movement mode were proposed. Through structural parameter optimisation analysis, two different energy harvesters were fabricated and it was found that the energy harvester with a parallel movement mode has better output performances. The energy harvester could provide output voltage/current and power of 8.35 V/17.39 mA and 15.13 mW (matched resistance is 200 Ω) at an acceleration of 5 m·s−2. The 100 mF capacitor could be charged to 2.72 V within 300 s, and the final voltage of the capacitor is greater than 3 V, which could sustainably drive commercial wireless temperature/humidity sensors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
High Voltage
High Voltage Energy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍: High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include: Electrical Insulation ● Outdoor, indoor, solid, liquid and gas insulation ● Transient voltages and overvoltage protection ● Nano-dielectrics and new insulation materials ● Condition monitoring and maintenance Discharge and plasmas, pulsed power ● Electrical discharge, plasma generation and applications ● Interactions of plasma with surfaces ● Pulsed power science and technology High-field effects ● Computation, measurements of Intensive Electromagnetic Field ● Electromagnetic compatibility ● Biomedical effects ● Environmental effects and protection High Voltage Engineering ● Design problems, testing and measuring techniques ● Equipment development and asset management ● Smart Grid, live line working ● AC/DC power electronics ● UHV power transmission Special Issues. Call for papers: Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信