{"title":"芝诺悖论:一些著名的非线性掺杂漂移忆阻器模型具有无限的电阻开关时间","authors":"R. Mutlu, T. D. Kumru","doi":"10.13164/re.2023.0312","DOIUrl":null,"url":null,"abstract":". There are nonlinear drift memristor models uti-lizing window functions in the literature. The resistive memories can also be modeled using memristors. If the memristor’s resistance switches from its minimum value to its maximum value or from its maximum value to its minimum value, the transition phenomenon is called resistive or memristive switching. The value of the time required for this transition is especially important for resistive computer memory applications. The switching time is measured by experiments and should be calculatable from the parameters of the memristor model used. In the literature, to the best of our knowledge, the resistive switching times have not been calculated except for the HP memristor model and a piecewise linear memristor model. In this study, the memristive switching times of some of the well-known memristor models using a window function are calculated and found to be infinite. This is not feasible according to the experiments in which a finite memristive switching time is reported. Inspired by these results, a new memristor window function that results in a finite switching time is proposed. The results of this study and the criteria given here can be used to make more realistic memristor models in the future.","PeriodicalId":54514,"journal":{"name":"Radioengineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Zeno Paradox: Some Well-known Nonlinear Dopant Drift Memristor Models Have Infinite Resistive Switching Time\",\"authors\":\"R. Mutlu, T. D. Kumru\",\"doi\":\"10.13164/re.2023.0312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". There are nonlinear drift memristor models uti-lizing window functions in the literature. The resistive memories can also be modeled using memristors. If the memristor’s resistance switches from its minimum value to its maximum value or from its maximum value to its minimum value, the transition phenomenon is called resistive or memristive switching. The value of the time required for this transition is especially important for resistive computer memory applications. The switching time is measured by experiments and should be calculatable from the parameters of the memristor model used. In the literature, to the best of our knowledge, the resistive switching times have not been calculated except for the HP memristor model and a piecewise linear memristor model. In this study, the memristive switching times of some of the well-known memristor models using a window function are calculated and found to be infinite. This is not feasible according to the experiments in which a finite memristive switching time is reported. Inspired by these results, a new memristor window function that results in a finite switching time is proposed. The results of this study and the criteria given here can be used to make more realistic memristor models in the future.\",\"PeriodicalId\":54514,\"journal\":{\"name\":\"Radioengineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.13164/re.2023.0312\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.13164/re.2023.0312","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Zeno Paradox: Some Well-known Nonlinear Dopant Drift Memristor Models Have Infinite Resistive Switching Time
. There are nonlinear drift memristor models uti-lizing window functions in the literature. The resistive memories can also be modeled using memristors. If the memristor’s resistance switches from its minimum value to its maximum value or from its maximum value to its minimum value, the transition phenomenon is called resistive or memristive switching. The value of the time required for this transition is especially important for resistive computer memory applications. The switching time is measured by experiments and should be calculatable from the parameters of the memristor model used. In the literature, to the best of our knowledge, the resistive switching times have not been calculated except for the HP memristor model and a piecewise linear memristor model. In this study, the memristive switching times of some of the well-known memristor models using a window function are calculated and found to be infinite. This is not feasible according to the experiments in which a finite memristive switching time is reported. Inspired by these results, a new memristor window function that results in a finite switching time is proposed. The results of this study and the criteria given here can be used to make more realistic memristor models in the future.
期刊介绍:
Since 1992, the Radioengineering Journal has been publishing original scientific and engineering papers from the area of wireless communication and application of wireless technologies. The submitted papers are expected to deal with electromagnetics (antennas, propagation, microwaves), signals, circuits, optics and related fields.
Each issue of the Radioengineering Journal is started by a feature article. Feature articles are organized by members of the Editorial Board to present the latest development in the selected areas of radio engineering.
The Radioengineering Journal makes a maximum effort to publish submitted papers as quickly as possible. The first round of reviews should be completed within two months. Then, authors are expected to improve their manuscript within one month. If substantial changes are recommended and further reviews are requested by the reviewers, the publication time is prolonged.