Yi-Bing Li, Yu-Wen Wu, Bin Su, Si Chen, Qing-Hua Zhang, Yi Chen
{"title":"造山增厚下地壳组成的热力学约束","authors":"Yi-Bing Li, Yu-Wen Wu, Bin Su, Si Chen, Qing-Hua Zhang, Yi Chen","doi":"10.1111/jmg.12679","DOIUrl":null,"url":null,"abstract":"<p>Orogenically thickened lower crust is the key site of crustal differentiation, crustal deformation, and Moho modification. However, the composition of thickened lower crust is still highly debated. Here, we calculate a set of pseudosections with mafic lower crust compositions in the Na<sub>2</sub>O–CaO–K<sub>2</sub>O–FeO–MgO–Al<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub>–H<sub>2</sub>O–TiO<sub>2</sub>–O<sub>2</sub> (NCKFMASHTO) system. Our modelling results show that the maximum thickness of the mafic lower crust increases with the Moho temperature (<i>T</i><sub>Moho</sub>). In addition, the lithologies of stable mafic crust are characterized by medium-pressure (MP) to high-pressure (HP) granulites at 40–50 km, HP granulites and garnet-omphacite granulites at 50–60 km, and garnet-omphacite granulites at 60–70 km. Under the Pamir geothermal conditions, mafic rocks with high SiO<sub>2</sub> (>50.2 wt%), X<sub>Mg</sub> (>0.70), X<sub>Ca</sub> (>0.49), or low X<sub>Al</sub> (<0.11) could be stable at 70 km; however, only ~10% of global mafic granulite xenoliths lie within this compositional range. Further modelling indicates that if <i>T</i><sub>Moho</sub> reaches 900–1000°C, neither the lower crust nor the upper mantle has significant strength relative to the upper crust and that only ~5–37% of mafic materials are gravitationally stable at 70 km. This implies that the base of doubly thickened (70 km) crust is dominated by intermediate-felsic rocks, consistent with the low <i>V</i><sub><i>p</i></sub> and <i>V</i><sub><i>p</i></sub>/<i>V</i><sub><i>s</i></sub> values seismically observed in young orogenic crustal roots. Thus, most mafic materials at >70 km could delaminate into the deep mantle. Our results provide insights on the formation of extremely thick crust with a predominantly intermediate-felsic base and the crustal thickness variation in continental collision zones.</p>","PeriodicalId":16472,"journal":{"name":"Journal of Metamorphic Geology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic constraints on the composition of orogenically thickened lower crust\",\"authors\":\"Yi-Bing Li, Yu-Wen Wu, Bin Su, Si Chen, Qing-Hua Zhang, Yi Chen\",\"doi\":\"10.1111/jmg.12679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Orogenically thickened lower crust is the key site of crustal differentiation, crustal deformation, and Moho modification. However, the composition of thickened lower crust is still highly debated. Here, we calculate a set of pseudosections with mafic lower crust compositions in the Na<sub>2</sub>O–CaO–K<sub>2</sub>O–FeO–MgO–Al<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub>–H<sub>2</sub>O–TiO<sub>2</sub>–O<sub>2</sub> (NCKFMASHTO) system. Our modelling results show that the maximum thickness of the mafic lower crust increases with the Moho temperature (<i>T</i><sub>Moho</sub>). In addition, the lithologies of stable mafic crust are characterized by medium-pressure (MP) to high-pressure (HP) granulites at 40–50 km, HP granulites and garnet-omphacite granulites at 50–60 km, and garnet-omphacite granulites at 60–70 km. Under the Pamir geothermal conditions, mafic rocks with high SiO<sub>2</sub> (>50.2 wt%), X<sub>Mg</sub> (>0.70), X<sub>Ca</sub> (>0.49), or low X<sub>Al</sub> (<0.11) could be stable at 70 km; however, only ~10% of global mafic granulite xenoliths lie within this compositional range. Further modelling indicates that if <i>T</i><sub>Moho</sub> reaches 900–1000°C, neither the lower crust nor the upper mantle has significant strength relative to the upper crust and that only ~5–37% of mafic materials are gravitationally stable at 70 km. This implies that the base of doubly thickened (70 km) crust is dominated by intermediate-felsic rocks, consistent with the low <i>V</i><sub><i>p</i></sub> and <i>V</i><sub><i>p</i></sub>/<i>V</i><sub><i>s</i></sub> values seismically observed in young orogenic crustal roots. Thus, most mafic materials at >70 km could delaminate into the deep mantle. Our results provide insights on the formation of extremely thick crust with a predominantly intermediate-felsic base and the crustal thickness variation in continental collision zones.</p>\",\"PeriodicalId\":16472,\"journal\":{\"name\":\"Journal of Metamorphic Geology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2022-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Metamorphic Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jmg.12679\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Metamorphic Geology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jmg.12679","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
Thermodynamic constraints on the composition of orogenically thickened lower crust
Orogenically thickened lower crust is the key site of crustal differentiation, crustal deformation, and Moho modification. However, the composition of thickened lower crust is still highly debated. Here, we calculate a set of pseudosections with mafic lower crust compositions in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O2 (NCKFMASHTO) system. Our modelling results show that the maximum thickness of the mafic lower crust increases with the Moho temperature (TMoho). In addition, the lithologies of stable mafic crust are characterized by medium-pressure (MP) to high-pressure (HP) granulites at 40–50 km, HP granulites and garnet-omphacite granulites at 50–60 km, and garnet-omphacite granulites at 60–70 km. Under the Pamir geothermal conditions, mafic rocks with high SiO2 (>50.2 wt%), XMg (>0.70), XCa (>0.49), or low XAl (<0.11) could be stable at 70 km; however, only ~10% of global mafic granulite xenoliths lie within this compositional range. Further modelling indicates that if TMoho reaches 900–1000°C, neither the lower crust nor the upper mantle has significant strength relative to the upper crust and that only ~5–37% of mafic materials are gravitationally stable at 70 km. This implies that the base of doubly thickened (70 km) crust is dominated by intermediate-felsic rocks, consistent with the low Vp and Vp/Vs values seismically observed in young orogenic crustal roots. Thus, most mafic materials at >70 km could delaminate into the deep mantle. Our results provide insights on the formation of extremely thick crust with a predominantly intermediate-felsic base and the crustal thickness variation in continental collision zones.
期刊介绍:
The journal, which is published nine times a year, encompasses the entire range of metamorphic studies, from the scale of the individual crystal to that of lithospheric plates, including regional studies of metamorphic terranes, modelling of metamorphic processes, microstructural and deformation studies in relation to metamorphism, geochronology and geochemistry in metamorphic systems, the experimental study of metamorphic reactions, properties of metamorphic minerals and rocks and the economic aspects of metamorphic terranes.