Philip Buczak, He Huang, Boris Forthmann, Philipp Doebler
{"title":"机器接管:用于发散思维任务自动评分的各种监督学习方法的比较","authors":"Philip Buczak, He Huang, Boris Forthmann, Philipp Doebler","doi":"10.1002/jocb.559","DOIUrl":null,"url":null,"abstract":"<p>Traditionally, researchers employ human raters for scoring responses to creative thinking tasks. Apart from the associated costs this approach entails two potential risks. First, human raters can be subjective in their scoring behavior (inter-rater-variance). Second, individual raters are prone to inconsistent scoring patterns (intra-rater-variance). In light of these issues, we present an approach for automated scoring of Divergent Thinking (DT) Tasks. We implemented a pipeline aiming to generate accurate rating predictions for DT responses using text mining and machine learning methods. Based on two existing data sets from two different laboratories, we constructed several prediction models incorporating features representing meta information of the response or features engineered from the response’s word embeddings that were obtained using pre-trained GloVe and Word2Vec word vector spaces. Out of these features, word embeddings and features derived from them proved to be particularly effective. Overall, longer responses tended to achieve higher ratings as well as responses that were semantically distant from the stimulus object. In our comparison of three state-of-the-art machine learning algorithms, Random Forest and XGBoost tended to slightly outperform the Support Vector Regression.</p>","PeriodicalId":39915,"journal":{"name":"Journal of Creative Behavior","volume":"57 1","pages":"17-36"},"PeriodicalIF":2.8000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jocb.559","citationCount":"6","resultStr":"{\"title\":\"The Machines Take Over: A Comparison of Various Supervised Learning Approaches for Automated Scoring of Divergent Thinking Tasks\",\"authors\":\"Philip Buczak, He Huang, Boris Forthmann, Philipp Doebler\",\"doi\":\"10.1002/jocb.559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Traditionally, researchers employ human raters for scoring responses to creative thinking tasks. Apart from the associated costs this approach entails two potential risks. First, human raters can be subjective in their scoring behavior (inter-rater-variance). Second, individual raters are prone to inconsistent scoring patterns (intra-rater-variance). In light of these issues, we present an approach for automated scoring of Divergent Thinking (DT) Tasks. We implemented a pipeline aiming to generate accurate rating predictions for DT responses using text mining and machine learning methods. Based on two existing data sets from two different laboratories, we constructed several prediction models incorporating features representing meta information of the response or features engineered from the response’s word embeddings that were obtained using pre-trained GloVe and Word2Vec word vector spaces. Out of these features, word embeddings and features derived from them proved to be particularly effective. Overall, longer responses tended to achieve higher ratings as well as responses that were semantically distant from the stimulus object. In our comparison of three state-of-the-art machine learning algorithms, Random Forest and XGBoost tended to slightly outperform the Support Vector Regression.</p>\",\"PeriodicalId\":39915,\"journal\":{\"name\":\"Journal of Creative Behavior\",\"volume\":\"57 1\",\"pages\":\"17-36\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jocb.559\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Creative Behavior\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jocb.559\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PSYCHOLOGY, EDUCATIONAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Creative Behavior","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jocb.559","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHOLOGY, EDUCATIONAL","Score":null,"Total":0}
The Machines Take Over: A Comparison of Various Supervised Learning Approaches for Automated Scoring of Divergent Thinking Tasks
Traditionally, researchers employ human raters for scoring responses to creative thinking tasks. Apart from the associated costs this approach entails two potential risks. First, human raters can be subjective in their scoring behavior (inter-rater-variance). Second, individual raters are prone to inconsistent scoring patterns (intra-rater-variance). In light of these issues, we present an approach for automated scoring of Divergent Thinking (DT) Tasks. We implemented a pipeline aiming to generate accurate rating predictions for DT responses using text mining and machine learning methods. Based on two existing data sets from two different laboratories, we constructed several prediction models incorporating features representing meta information of the response or features engineered from the response’s word embeddings that were obtained using pre-trained GloVe and Word2Vec word vector spaces. Out of these features, word embeddings and features derived from them proved to be particularly effective. Overall, longer responses tended to achieve higher ratings as well as responses that were semantically distant from the stimulus object. In our comparison of three state-of-the-art machine learning algorithms, Random Forest and XGBoost tended to slightly outperform the Support Vector Regression.
期刊介绍:
The Journal of Creative Behavior is our quarterly academic journal citing the most current research in creative thinking. For nearly four decades JCB has been the benchmark scientific periodical in the field. It provides up to date cutting-edge ideas about creativity in education, psychology, business, arts and more.