{"title":"圆展开映射的Cramér距离和离散化Ⅱ:模拟","authors":"Pierre-Antoine Guih'eneuf, M. Monge","doi":"10.1080/14689367.2023.2236036","DOIUrl":null,"url":null,"abstract":"This paper presents some numerical experiments in relation with the theoretical study of the ergodic short-term behaviour of discretizations of expanding maps done in arXiv:2206.07991 [math.DS]. Our aim is to identify the phenomena driving the evolution of the Cram\\'er distance between the $t$-th iterate of Lebesgue measure by the dynamics $f$ and the $t$-th iterate of the uniform measure on the grid of order $N$ by the discretization on this grid. Based on numerical simulations we propose some conjectures on the effects of numerical truncation from the ergodic viewpoint.","PeriodicalId":50564,"journal":{"name":"Dynamical Systems-An International Journal","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Cramér distance and discretizations of circle expanding maps II: simulations\",\"authors\":\"Pierre-Antoine Guih'eneuf, M. Monge\",\"doi\":\"10.1080/14689367.2023.2236036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents some numerical experiments in relation with the theoretical study of the ergodic short-term behaviour of discretizations of expanding maps done in arXiv:2206.07991 [math.DS]. Our aim is to identify the phenomena driving the evolution of the Cram\\\\'er distance between the $t$-th iterate of Lebesgue measure by the dynamics $f$ and the $t$-th iterate of the uniform measure on the grid of order $N$ by the discretization on this grid. Based on numerical simulations we propose some conjectures on the effects of numerical truncation from the ergodic viewpoint.\",\"PeriodicalId\":50564,\"journal\":{\"name\":\"Dynamical Systems-An International Journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamical Systems-An International Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/14689367.2023.2236036\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamical Systems-An International Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2023.2236036","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Cramér distance and discretizations of circle expanding maps II: simulations
This paper presents some numerical experiments in relation with the theoretical study of the ergodic short-term behaviour of discretizations of expanding maps done in arXiv:2206.07991 [math.DS]. Our aim is to identify the phenomena driving the evolution of the Cram\'er distance between the $t$-th iterate of Lebesgue measure by the dynamics $f$ and the $t$-th iterate of the uniform measure on the grid of order $N$ by the discretization on this grid. Based on numerical simulations we propose some conjectures on the effects of numerical truncation from the ergodic viewpoint.
期刊介绍:
Dynamical Systems: An International Journal is a world-leading journal acting as a forum for communication across all branches of modern dynamical systems, and especially as a platform to facilitate interaction between theory and applications. This journal publishes high quality research articles in the theory and applications of dynamical systems, especially (but not exclusively) nonlinear systems. Advances in the following topics are addressed by the journal:
•Differential equations
•Bifurcation theory
•Hamiltonian and Lagrangian dynamics
•Hyperbolic dynamics
•Ergodic theory
•Topological and smooth dynamics
•Random dynamical systems
•Applications in technology, engineering and natural and life sciences