圆展开映射的Cramér距离和离散化Ⅱ:模拟

Pub Date : 2022-06-16 DOI:10.1080/14689367.2023.2236036
Pierre-Antoine Guih'eneuf, M. Monge
{"title":"圆展开映射的Cramér距离和离散化Ⅱ:模拟","authors":"Pierre-Antoine Guih'eneuf, M. Monge","doi":"10.1080/14689367.2023.2236036","DOIUrl":null,"url":null,"abstract":"This paper presents some numerical experiments in relation with the theoretical study of the ergodic short-term behaviour of discretizations of expanding maps done in arXiv:2206.07991 [math.DS]. Our aim is to identify the phenomena driving the evolution of the Cram\\'er distance between the $t$-th iterate of Lebesgue measure by the dynamics $f$ and the $t$-th iterate of the uniform measure on the grid of order $N$ by the discretization on this grid. Based on numerical simulations we propose some conjectures on the effects of numerical truncation from the ergodic viewpoint.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Cramér distance and discretizations of circle expanding maps II: simulations\",\"authors\":\"Pierre-Antoine Guih'eneuf, M. Monge\",\"doi\":\"10.1080/14689367.2023.2236036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents some numerical experiments in relation with the theoretical study of the ergodic short-term behaviour of discretizations of expanding maps done in arXiv:2206.07991 [math.DS]. Our aim is to identify the phenomena driving the evolution of the Cram\\\\'er distance between the $t$-th iterate of Lebesgue measure by the dynamics $f$ and the $t$-th iterate of the uniform measure on the grid of order $N$ by the discretization on this grid. Based on numerical simulations we propose some conjectures on the effects of numerical truncation from the ergodic viewpoint.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/14689367.2023.2236036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2023.2236036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了一些与arXiv:2206.07991[math.DS]中对展开图离散化的遍历短期行为的理论研究有关的数值实验顺序为$N$的网格通过该网格上的离散化。在数值模拟的基础上,我们从遍历的角度对数值截断的影响提出了一些猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Cramér distance and discretizations of circle expanding maps II: simulations
This paper presents some numerical experiments in relation with the theoretical study of the ergodic short-term behaviour of discretizations of expanding maps done in arXiv:2206.07991 [math.DS]. Our aim is to identify the phenomena driving the evolution of the Cram\'er distance between the $t$-th iterate of Lebesgue measure by the dynamics $f$ and the $t$-th iterate of the uniform measure on the grid of order $N$ by the discretization on this grid. Based on numerical simulations we propose some conjectures on the effects of numerical truncation from the ergodic viewpoint.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信