{"title":"携带心肌微小RNA的外泌体介导的抑制CXCR4的骨髓源性细胞动员用于梗死心脏的修复","authors":"Lan Chen, N. Fukuda","doi":"10.21037/NCRI.2019.05.02","DOIUrl":null,"url":null,"abstract":"As the capacities of proliferation and self-healing of cardiomyocytes in adults are limited, treatment of ischemic myocardium after acute myocardial infarction (AMI) led to a trend of investigations and research into human embryonic stem cells/induced pluripotent stem cells, cardiac stem/progenitor cells, bone marrow (BM)-derived cells including mesenchymal stem cells, and endothelial progenitor cells to promote cardiac neovascularization and repair of the ischemic injury to rescue the ischemic myocardium and function of the heart (1-3).","PeriodicalId":74314,"journal":{"name":"Non-coding RNA investigation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bone marrow-derived cell mobilization with suppression of CXCR4 mediated by exosomes carrying myocardial microRNAs for repair of the infarcted heart\",\"authors\":\"Lan Chen, N. Fukuda\",\"doi\":\"10.21037/NCRI.2019.05.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the capacities of proliferation and self-healing of cardiomyocytes in adults are limited, treatment of ischemic myocardium after acute myocardial infarction (AMI) led to a trend of investigations and research into human embryonic stem cells/induced pluripotent stem cells, cardiac stem/progenitor cells, bone marrow (BM)-derived cells including mesenchymal stem cells, and endothelial progenitor cells to promote cardiac neovascularization and repair of the ischemic injury to rescue the ischemic myocardium and function of the heart (1-3).\",\"PeriodicalId\":74314,\"journal\":{\"name\":\"Non-coding RNA investigation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Non-coding RNA investigation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21037/NCRI.2019.05.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-coding RNA investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21037/NCRI.2019.05.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bone marrow-derived cell mobilization with suppression of CXCR4 mediated by exosomes carrying myocardial microRNAs for repair of the infarcted heart
As the capacities of proliferation and self-healing of cardiomyocytes in adults are limited, treatment of ischemic myocardium after acute myocardial infarction (AMI) led to a trend of investigations and research into human embryonic stem cells/induced pluripotent stem cells, cardiac stem/progenitor cells, bone marrow (BM)-derived cells including mesenchymal stem cells, and endothelial progenitor cells to promote cardiac neovascularization and repair of the ischemic injury to rescue the ischemic myocardium and function of the heart (1-3).